
Lean at MC2022
Release 0.1

Aaron Anderson, Apurva Nakade
Jalex Stark

Jun 27, 2022

CONTENTS

1 Introduction 1

2 Logic in Lean - Part 1 3

3 Logic in Lean - Part 2 11

4 Infinitely Many Primes 19

5 Sqrt 2 is irrational 25

6 Bits & Pieces 29

7 Pretty Symbols in Lean 33

8 Glossary of Tactics and Lemmas 35

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is Lean?

Lean is an open source proof-checker and a proof-assistant. One can explain mathematical proofs to it and it can check
their correctness. It also simplifies the proof writing process by providing goals and tactics.
Lean is built on top of a formal system called type theory. In type theory, the basic notions are “terms” and “types” —
compare to “elements” and “sets” in set theory. Every term has a type, and types are just a special kind of term. Terms
can be interpreted as mathematical objects, functions, propositions, or proofs. The only two things Lean can do is create
terms and check their types. By iterating these two operations, we can teach Lean to verify complex mathematical proofs.

def x := 2 + 2 -- a natural number
def f (x : N) := x + 3 -- a function
def easy_theorem_statement := 2 + 2 = 4 -- a proposition
def fermats_last_theorem_statement -- another proposition

:=
∀ n : N,
n > 2
→
¬ (∃ x y z : N, (x^n + y^n = z^n) ∧ (x ̸= 0) ∧ (y ̸= 0) ∧ (z ̸= 0))

theorem
easy_proof : easy_theorem_statement -- proof of easy_theorem
:=
begin

rw easy_theorem_statement, -- a tactic
end

theorem
hard_proof : fermats_last_theorem_statement -- cheating!
:=
begin

sorry,
end

#check x
#check f
#check easy_theorem_statement
#check fermats_last_theorem_statement
#check easy_proof
#check hard_proof

1

https://leanprover.github.io/about/

Lean at MC2022, Release 0.1

1.2 How to use these notes

Every once in a while, you will see a code snippet like this:

#eval "Hello, World!"

Clicking on the try it! button in the upper right corner will open a copy in a window so that you can edit it, and Lean
provides feedback in the Lean Infoview window. We use this feature to provide exercises inline in the notes. We
recommend attempting each exercise as you go along.
These notes are designed for a 5-day Lean crash course at Mathcamp 2022, based on a similar class at Mathcamp 2020.
On Days 1 and 2 you’ll learn the basics of type theory and some basic tactics in Lean. On Days 3, 4, 5 you’ll use
these to prove increasingly complex theorems, namely the infinitude of primes and irrationality of

√
2.

These notes provide a sneak-peek into the world of theorem proving in Lean and are by no means comprehensive. It is
recommended that you simultaneously attempt at least one of the following two options.

1. Play the Natural Number Game.
2. Read Theorem Proving in Lean.

The Natural Number Game is a fun (and highly addictive!) game that proves same basic properties of natural numbers
in Lean. Theorem Proving in Lean is a comprehensive online book that aims to cover all the theorem proving aspects of
Lean in great detail.
The Lean community is very welcoming to newcomers, and people are available on the Lean Zulip chat group round the
clock to answer questions. You can also join Kevin Buzzard’s Discord server which has a relatively younger crowd.

1.3 Acknowledgments.

These notes are developed by Aaron Anderson, updating notes for Mathcamp 2020 by Apurva Nakade and Jalex Stark
with a lot of help from Mathcamp campers and Mathcamp staff Joanna and Maya. Large chunks of these notes are taken
from various learning resources available on the leanprover-community website.

1.4 Useful Links.

1. Formalizing 100 theorems
2. Formalizing 100 theorems in Lean
3. Articles, videos, blog posts, etc.

1. The Xena Project
2. The Mechanization of Mathematics
3. The Future of Mathematics
4. Kevin Buzzard’s Twitch channel. In particular, checkout this video about summer projects.

4. Discord server
5. Lean Zulip chat group

2 Chapter 1. Introduction

https://wwwf.imperial.ac.uk/~buzzard/xena/natural_number_game/
https://leanprover.github.io/theorem_proving_in_lean/
https://wwwf.imperial.ac.uk/~buzzard/xena/natural_number_game/
https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.zulipchat.com/
https://t.co/DSz6mbw4Oc?amp=1
https://www.math.ucla.edu/~aaronanderson/
https://apurvanakade.github.io
https://jalexstark.com/
https://leanprover-community.github.io/learn.html
http://www.cs.ru.nl/~freek/100/index.html
https://leanprover-community.github.io/100.html
https://xenaproject.wordpress.com/
https://www.ams.org/journals/notices/201806/rnoti-p681.pdf
https://www.youtube.com/watch?v=Dp-mQ3HxgDE
https://www.twitch.tv/kbuzzard
https://www.twitch.tv/videos/665779560
https://t.co/DSz6mbw4Oc?amp=1
https://leanprover.zulipchat.com/

CHAPTER

TWO

LOGIC IN LEAN - PART 1

Today’s goal is to understand the philosophy of type theory (in Lean). Don’t try to memorize anything, that will happen
automatically. Instead, try to do as many exercises as you can. Practice is the only way to learn a new programming
language. And always save your work. The easiest way to do this in the browser is by bookmarking the Lean page,
which contains your code in its URL.
Lean is built on top of a logic system called type theory, which is an alternative to set theory. In type theory, instead of
elements we have terms and every term has a type. When translated to math, terms can be either mathematical objects,
functions, propositions, or proofs. The notation x : X stands for “x is a term of type X” or “x is an inhabitant of X”.
For the most part, you can think of a type as a set and terms as elements of the set.

2.1 Propositions as types

In set theory, a proposition is any statement that has the potential of being true or false, like 2 + 2 = 4, 2 + 2 = 5,
“Fermat’s last theorem”, or “Riemann hypothesis”. In type theory, there is a special type called Prop whose inhabitants
are propositions. Furthermore, each proposition P is itself a type and the inhabitants of P are its proofs!

P : Prop -- P is a proposition
hp : P -- hp is a proof of P

As such, in type theory “producing a proof of P” is the same as “producing a term of type P” and so a proposition P is
true if there exists a term hp of type P.
Notation. Throughout these notes, P, Q, R, ... will denote propositions.

2.1.1 Propositions in Lean

In Lean, a proposition and its proof are written using the following syntax.

theorem fermats_last_theorem
(n : N)
(n_gt_2 : n > 2)
:
¬ (∃ x y z : N, (x^n + y^n = z^n) ∧ (x ̸= 0) ∧ (y ̸= 0) ∧ (z ̸= 0))

:=
begin

sorry,
end

Let us parse the above statement. (Lean ignores multiple whitespaces, tabs, and new lines. You could theoretically write
the entire code in a single line. Please don’t.)

3

Lean at MC2022, Release 0.1

• fermats_last_theorem is the name of the theorem.
• (n : N) and (n_gt_2 : n > 2) are the two hypotheses. The former says n is a natural number and the
latter says that n_gt_2 is a proof of n > 2.

• : is the delimiter between hypotheses and targets
• ¬ (∃ x y z : N, (x^n + y^n = z^n) ∧ (x ̸= 0) ∧ (y ̸= 0) ∧ (z ̸= 0)) is the target
of the theorem. We’ll learn all these symbols soon.

• := begin ... end contains the proof. When you start your proof, Lean opens up a goal window for you to
keep track of hypotheses and targets. Your goal is to produce a term that has the type of the target.

-- example of Lean goal window
n : N, -- hypothesis 1
n_gt_2 : n > 2 -- hypothesis 2
⊢ ¬∃ (x y z : N), x ^ n + y ^ n = z ^ n ∧ x ̸= 0 ∧ y ̸= 0 ∧ z ̸= 0 -- target

• The commands you write between begin and end are called tactics. sorry, is an example of a tactic. Very
Important: All tactics must end with a comma (,) .

Even though they are not explicitly displayed, all the theorems in the Lean library are also hypotheses that you can use to
close the goal.

2.1.2 Implication

In set theory, the proposition P ⇒ Q (“P implies Q”) is true if either both P and Q are true or if P is false. In type theory,
a proof of an implication P ⇒ Q is just a function f : P → Q. Given a function f : P → Q, every proof hp :
P produces a proof f(hp) : Q. If P is false then P is empty, and there exists an empty function from an empty type
to any type. Hence, in type theory we use→ to denote implication. (Type it in Lean editors with \to.)

2.2 Implications in Lean

We’ll start learning tactics by proving implications in Lean. In the following sections, there are tables describing what a
tactic does. Solve the following exercises to see the tactics in action.
The first two tactics we’ll learn are refine and rintro.

refine If P is the target of the current goal and hp is a term of type P, then refine hp, will close
the goal.
Mathematically, this saying “this is what we were required to prove”.

rintro If the target of the current goal is a function P → Q, then rintro hp, will produce a
hypothesis hp : P and change the target to Q.
Mathematically, this is saying that in order to define a function from P to Q, we first need to
choose (introduce) an arbitrary element of P.
If you want to use this repeatedly, you can type rintro h1 h2 instead of rintro h1,
and then rintro h2,.

import tactic
/--

``refine``

If ``P`` is the target of the current goal

(continues on next page)

4 Chapter 2. Logic in Lean - Part 1

https://en.wikipedia.org/wiki/Function_(mathematics)#empty_function

Lean at MC2022, Release 0.1

(continued from previous page)
and ``hp`` is a term of type ``P``,
then ``refine hp,`` will close the goal.

``rintro``

If the target of the current goal is a function ``P → Q``, then
``rintro hp,`` will produce a hypothesis
``hp : P`` and change the target to ``Q``.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

theorem tautology (P : Prop) (hp : P) : P :=
begin

sorry,
end

theorem tautology' (P : Prop) : P → P :=
begin

sorry,
end

example (P Q : Prop): (P → (Q → P)) :=
begin

sorry,
end

-- Can you find two different ways of proving the following?
example (P Q : Prop) : ((Q → P) → (Q → P)) :=
begin

sorry,
end

We know how to start a proof, and how to finish a proof, but what about partial progress? Here’s two approaches. One
uses a new tactic, have, for forward reasoning, and the other uses refine again for backward reasoning.
In both of these cases, if f is a term of type P → Q, then we can think of f as a function, sending proofs of P to proofs
of Q. If hp is a term of type P, we can literally write f (hp), although often we can skip the parentheses and just write
f hp.

have have is used to create intermediate variables.
If f is a term of type P → Q and hp is a term of type P, then have hq := f hp,
creates the hypothesis hq : Q .

refine refine can be used for backward reasoning.
If the target of the current goal is Q and f is a term of type P → Q, then refine f _,
changes target to P.
Mathematically, this is equivalent to saying “because P implies Q, to prove Q it suffices to prove
P”. The _ stands in for a proof of P that we will provide later.

Often these two tactics can be used interchangeably. When writing a big proof, you often want a healthy combination of
the two that makes the proof readable.

2.2. Implications in Lean 5

Lean at MC2022, Release 0.1

import tactic
/--

``have``

If ``f`` is a term of type ``P → Q`` and
``hp`` is a term of type ``P``, then
``have hq := f hp ,`` creates the hypothesis ``hq : Q`` .

``refine``

If the target of the current goal is ``Q`` and
``f`` is a term of type ``P → Q``, then
``refine f _,`` changes target to ``P``.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

example (P Q R : Prop) (hp : P) (f : P → Q) (g : Q → R) : R :=
begin

sorry,
end

example (P Q R S T U: Type)
(hpq : P → Q)
(hqr : Q → R)
(hqt : Q → T)
(hst : S → T)
(htu : T → U)
: P → U :=
begin

sorry,
end

We will be learning a lot of tactics this week. If ever you lose track of them, check out the Glossary of tactics, which lists
all of the tactics that are mentioned in these notes, as well as some others which are not needed for this class, but may
come up if you read other code in Lean.

2.3 And / Or

The operators and (∧) and or (∨) are easy to use in Lean. (You can type them in Lean editors with \and and \or.)
Given a term hpq : P ∧ Q, there are tactics that let you create terms hp : P and hq : Q, and vice versa.
Similarly for P ∨ Q, with a subtle change (see below).
Note that when multiple goals are open, you are trying to solve the topmost goal. The easiest way to keep track of multiple
goals is with brackets. After you use a tactic with multiple goals, you should use { }, to bracket off your attempt to
solve the first goal, and { }, to bracket off your second goal. Then if you put your cursor in between the brackets, the
goal monitor on the right should only display one goal at a time!

6 Chapter 2. Logic in Lean - Part 1

Lean at MC2022, Release 0.1

cases cases is a general tactic that breaks a complicated term into simpler ones.
If hpq is a term of type P ∧ Q, then cases hpq with hp hq, breaks it into hp : P and hp
: Q.
If fg is a term of type P ↔ Q, then cases fg with f g, breaks it into f : P → Q and g :
Q → P. (This is because P ↔ Q is actually shorthand for (P → Q) ∧ (Q → P).)
If hpq is a term of type P ∨ Q, then cases hpq with hp hq, creates two goals and adds the
hypotheses hp : P and hq : Q to one each.

split split is a general tactic that breaks a complicated goal into simpler ones.
If the target of the current goal is P ∧ Q, then split, breaks up the goal into two goals with targets P
and Q.
If the target of the current goal is P ↔ Q, then split, breaks up the goal into two goals with targets
P → Q and Q → P.

left If the target of the current goal is P ∨ Q, then left, changes the target to P.
right If the target of the current goal is P ∨ Q, then right, changes the target to Q.

/--

``cases``

``cases`` is a general tactic that breaks up complicated terms.
If ``hpq`` is a term of type ``P ∧ Q`` or ``P ∨ Q`` or ``P ↔ Q``, then use
``cases hpq with hp hq,``.

``split``

If the target of the current goal is ``P ∧ Q`` or ``P ↔ Q``, then use
``split,``.

``left``/``right``

If the target of the current goal is ``P ∨ Q``, then use
either ``left,`` or ``right,`` (choose wisely).

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

theorem bracket_example (P Q : Prop) (hp : P) (hq : Q) : P ∧ Q :=
begin

split,
{
sorry,

},
{
sorry,

}
end

example (P Q : Prop) : P ∧ Q → Q ∧ P :=
begin

sorry,
end

example (P Q : Prop) : P ∨ Q → Q ∨ P :=
begin

(continues on next page)

2.3. And / Or 7

Lean at MC2022, Release 0.1

(continued from previous page)
sorry,

end

2.3.1 Optional Sidenote on Brackets

We’ve discussed that building a term of type P is pretty much the same thing as providing a proof of P. We’ve also seen
that if you want to provide a term of type P ∧ Q, all you need is a term hp : P, a term hq : Q, and the split
tactic. However, you don’t need the split tactic for this, you can also build the term directly, using the angle brackets
⟨⟩, typed with \langle and \rangle. For example:

example (P Q : Prop) (hp : P) (hq : Q) : P ∧ Q :=
begin

refine ⟨hp, hq⟩,
end

This works because ⟨hp, hq⟩ is a term of type P ∧ Q, because Lean defines P ∧ Q to be the type of ordered pairs,
consisting of a term of type P and then a term of type Q. If you want to explore this, try using this to rewrite your above
proofs that use ∧. (If you do, what does refine ⟨_, _⟩, do?)

2.4 Negation

In type theory, there is a special proposition false : Prop which has no proof (hence is empty). The negation of a
proposition ¬ P is the implication P → false. Such a function exists if and only if P itself is empty (empty function),
hence P → false is inhabited if and only if P is empty which justifies using it as the definition of ¬ P. (Type ¬ it as
\not.)
To summarize:

1. Proving a proposition P is equivalent to producing an inhabitant hp : P.
2. Proving an implication P → Q is equivalent to producing a function f : P → Q.
3. The negation, ¬ P, is defined as the implication P → false.

For the following exercises, recall that ¬ P is defined as P → false, ¬ (¬ P) is (P → false) → false,
and so on. Here are some hints if you get stuck.

import tactic
/--

Recall that
``¬ P`` is ``P → false``,
``¬ (¬ P)`` is ``(P → false) → false``, and so on.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

theorem self_imp_not_not_self (P : Prop) : P → ¬ (¬ P) :=
begin

sorry,
end

(continues on next page)

8 Chapter 2. Logic in Lean - Part 1

https://en.wikipedia.org/wiki/Function_(mathematics)#empty_function

Lean at MC2022, Release 0.1

(continued from previous page)
theorem contrapositive (P Q : Prop) : (P → Q) → (¬Q → ¬P) :=
begin

sorry,
end

example (P : Prop) : ¬ (¬ (¬ P)) → ¬ P :=
begin

sorry,
end

Now that we’re working with negations, we can start to talk about everybody’s favorite or least favorite proof technique,
contradiction. Or at least, a version of it called the “Principle of Explosion”. This says that you can derive any fact from a
contradiction. In Lean, this is written as false → P, and whenever you need it, there is a hypothesis false.elim
: false → P, which works for any P : Prop.

import tactic
/--

Recall that for any ``P : Prop``, you can use ``false.elim : false → P``
to prove ``P`` from a contradiction.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

example (P Q R : Prop) : P ∧ false ↔ false :=
begin

sorry,
end

theorem principle_of_explosion (P Q : Prop) : P ∧ ¬ P → Q :=
begin

sorry,
end

2.5 Final Remarks

You might be wondering, if type theory is so cool why have I not heard of it before?
Many programming languages highly depend on type theory (that’s where the term datatype comes from). Once you
define a term x : N, a computer can immediately check that all the manipulations you do with x are valid manipulations
of natural numbers (so you don’t accidentally divide by 01 , for example).
Unfortunately, this also means that the term 1 : N is different from the term 1 : Z. In Lean, if you do (1 : N -
2 : N) you get 0 : N but if you do (1 : Z - 2 : Z) you get -1 : Z, that’s because natural numbers and
subtraction are not buddies. Another issue is that 1 : N = 1 : Z is not a valid statement in type theory. This is not
the end of the world though. Lean allows you to coerce 1 : N to 1 : Z if you want subtraction to work properly, or
1 : N to 1 : Q if you want division to work properly.
This, and a few other such things, is what drives most mathematicians away from type theory. But these things are only
difficult when you’re first learning them. With practice, type theory becomes second nature, the same as set theory. In fact,
the exact type theoretic system Lean uses is equiconsistent with a slightly stronger version of ZFC, the generally-accepted
axiom system for set theory. (See Mario Carneiro’s MS thesis)

1 Except under staff supervision.

2.5. Final Remarks 9

https://en.wikipedia.org/wiki/Principle_of_explosion
https://github.com/digama0/lean-type-theory/releases/tag/v1.0

Lean at MC2022, Release 0.1

footnotes

10 Chapter 2. Logic in Lean - Part 1

CHAPTER

THREE

LOGIC IN LEAN - PART 2

The goal today is to wrap up the remaining bits of logic and move on to doing some “actual math”. Remember to always
save your work. You might find the Glossary of tactics page and the Pretty symbols page useful.
Before we move on to new stuff, let’s understand what we did yesterday.

3.1 Behind the scenes

A note on brackets: It is not uncommon to compose half a dozen functions in Lean. The brackets get really messy and
unwieldy. As such, Lean will often drop the brackets by following the following conventions.

• The function P → Q → R → S stands for P → (Q → (R → S)).
• The expression a + b + c + d stands for ((a + b) + c) + d.

An easy way to remember this is that, arrows are bracketed on the right and binary operators on the left.

3.1.1 Proof irrelevance

It might feel a bit weird to say that a proposition has proofs as its inhabitants. Proofs can get huge and it seems unnecessary
to have to remember not just the statement but also its proof. This is something we don’t normally do in math. To hide
this complication, in type theory there is an axiom, called proof irrelevance, which says that if P : Prop and hp1 hp2
: P then hp1 = hp2. Taking our analogy with sets further, you can think of a proposition as a set which is either
empty or contains a single element (false or true). In fact, in some forms of type theory (e.g. homotopy type theory) this
is taken as the definition of propositions. This is of course not true for general types. For example, 0 : N ̸= 1 : N.

3.1.2 Proofs as functions

Every time you successfully construct a proof of a theorem say

theorem tautology (P : Prop) : P → P :=
begin

rintro hp,
refine hp,

end

Lean constructs a proof term tautology : ∀ P : Prop, P → P (you can see this by typing #check
tautology).
In type theory, the for all quantifier, ∀, is a generalized function, called a dependent function. For all practical purposes,
we can think of tautology as having the type (P : Prop) → (P → P). Note that this is not a function in

11

https://en.wikipedia.org/wiki/Homotopy_type_theory
https://en.wikipedia.org/wiki/Dependent_type

Lean at MC2022, Release 0.1

the classical sense of the word because the codomain (P → P) depends on the input variable P. If Q : Prop, then
tautology(Q) is a term of type Q → Q.
Consider a theorem with multiple hypothesis, say

theorem hello_world (hp : P) (hq : Q) (hr : R) : S

Once we provide a proof of it, Lean will create a proof term hello_world : (hp:P) → (hq:Q) → (hr:R)
→ S. So that if we have terms hp' : P, hq' : Q, hr' : R then hello_world hp' hq' hr' (note the
convenient lack of brackets) will be a term of type S.
Once constructed, any term can be used in a later proof. For example,

example (P Q : Prop) : (P → Q) → (P → Q) :=
begin

refine tautology (P → Q),
end

This is how Lean simulates mathematics. Every time you prove a theorem using tactics a proof term gets created. Because
of proof irrelevance, Lean forgets the exact content of the proof and only remembers its type. All the proof terms can
then be used in later proofs. All of this falls under the giant umbrella of the Curry–Howard correspondence.

3.1.3 Optional Sidenote on Lambda

Speaking of generalized functions, and terms, we can define the term tautology directly, without using rintro:

theorem tautology (P : Prop) : P → P :=
begin

refine λ hp, hp,
end

The λ, typed \lambda, plays basically the role of rintro. In general, the term λ x, y will define a (generalized)
function that on input x, gives output y. For instance, once we can talk about addition, λ x, x + 2 will be the function
that adds 2 to a given natural number. If you want to, you can play around with using λ and rintro interchangeably.

3.2 The Law of the Excluded Middle

You can prove exactly one of the following using just refine, rintro, and have. Can you find which one?

import tactic

/--

You can prove exactly one of the following three using just
``refine``, ``rintro``, and ``have``.

Can you find which one?

--/

theorem not_not_self_imp_self (P : Prop) : ¬ ¬ P → P:=
begin

sorry,
end

(continues on next page)

12 Chapter 3. Logic in Lean - Part 2

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

Lean at MC2022, Release 0.1

(continued from previous page)

theorem contrapositive_converse (P Q : Prop) : (¬Q → ¬P) → (P → Q) :=
begin

sorry,
end

example (P : Prop) : ¬ P → ¬ ¬ ¬ P :=
begin

sorry,
end

This is because it is not true that ¬ ¬ P = P by definition, after all, ¬ ¬ P is (P → false) → false which
is drastically different from P. There is an extra axiom called the law of excluded middle which says that either P is
inhabited or ¬ P is inhabited (and there is no middle option) and so P ↔ ¬ ¬ P. Lean gives it to us in the form of em
P : P ∨ ¬ P, although it’s not always included. Because some mathematicians would prefer to avoid using this in
their proofs, you have to type the lines noncomputable theory and open_locale classical near the top
of the file, to show that you’re ok with using all of classical logic!

/--

``em``

If ``P : Prop``, then ``em P : P ∨ ¬ P`` lets you use the law of the excluded␣
↪→middle on ``P``.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

theorem not_not_self_imp_self (P : Prop) : ¬ ¬ P → P:=
begin

sorry,
end

theorem contrapositive_converse (P Q : Prop) : (¬Q → ¬P) → (P → Q) :=
begin

sorry,
end

example (P : Prop) : ¬ P → ¬ ¬ ¬ P :=
begin

sorry,
end

theorem principle_of_explosion (P Q : Prop) : P → (¬ P → Q) :=
begin

sorry,
end

There are more specialized tactics that combine false.elim and em with other tactics to streamline the process of
dealing with negations. You can read about them at Glossary of tactics, and if you want, you can try to shorten some of
your above proofs with them.

3.2. The Law of the Excluded Middle 13

Lean at MC2022, Release 0.1

3.3 Quantifiers

As mentioned it the introduction, the for all quantifier, ∀, is a generalization of a function. As such the tactics for dealing
with ∀ are the same as those for→. (Type it as \forall.)

have If hp is a term of type ∀ x : X, P x and y is a term of type X then have hpy := hp(y) creates
a hypothesis hpy : P y.

rin-
tro

If the target of the current goal is ∀ x : X, P x, then rintro x, creates a hypothesis x : X and
changes the target to P x.

The there exists quantifier, ∃, in type theory, uses similar tools to If you want to prove a statement ∃ x : X, P x then
you need to provide a witness. If you have a term hp : ∃ x : X, P x then from this you can extract a witness.
(Type it as \exists.)

cases If hp is a term of type ∃ x : X, P x, then cases hp with x key, breaks it into x : X and
key : P x.

use If the target of the current goal is ∃ x : X, P x and y is a term of type X, then use y, changes the
target to P y and tries to close the goal.

Finally, we know enough Lean to start doing some fun stuff.

3.3.1 Barber paradox

Let’s disprove the “barber paradox” due to Bertrand Russell. The claim is that in a certain town there is a (male) barber
that shaves all the men who do not shave themselves. (Why is this a paradox?) Prove that this is a contradiction. Here
are some hints if you get stuck.

/--

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

-- men is type.
-- x : men means x is a man in the town
-- shaves x y is inhabited if x shaves y

variables (men : Type) (barber : men)
variable (shaves : men → men → Prop)

example : ¬ (∀ x : men, shaves barber x ↔ ¬ shaves x x) :=
begin
sorry,

end

14 Chapter 3. Logic in Lean - Part 2

Lean at MC2022, Release 0.1

3.3.2 Mathcampers singing paradox

Assume that the main lounge is non-empty. At a fixed moment in time, there is someone in the lounge such that, if they
are singing, then everyone in the lounge is singing. (See hints).

/--

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

-- camper is a type.
-- If x : camper then x is a camper in the main lounge.
-- singing(x) is inhabited if x is singing

theorem math_campers_singing_paradox
(camper : Type)
(singing : camper → Prop)
(alice : camper) -- making sure that there is at least one camper in the lounge
: ∃ x : camper, (singing x → (∀ y : camper, singing y)) :=

begin
sorry,

end

3.3.3 Relationship conundrum

A relation r on a type X is a map r : X → X → Prop. We say that x is related to y if r x y is inhabited.
• r is reflexive if ∀ x : X, x is related to itself.
• r is symmetric if ∀ x y : X, x is related to y implies y is related to x.
• r is transitive if ∀ x y z : X, x is related to y and y is related to x implies z is related to z.
• r is connected if for all x : X there is a y : Y such that x is related to y.

Show that if a relation is symmetric, transitive, and connected, then it is also reflexive.

import tactic

variable X : Type

theorem reflexive_of_symmetric_transitive_and_connected
(r : X → X → Prop)
(h_symm : ∀ x y : X, r x y → r y x)
(h_trans : ∀ x y z : X, r x y → r y z → r x z)
(h_connected : ∀ x, ∃ y, r x y)

: (∀ x : X, r x x) :=
begin

sorry,
end

3.3. Quantifiers 15

Lean at MC2022, Release 0.1

3.4 Equality

So far we have not seen how to deal with propositions of the form P = Q, for example, 1 + 2 + ... + n = n(n +
1)/2. Proving these propositions by hand requires messing around with the axioms of type theory. Using equalities on
the other hand is very easy. The rewrite tactic (usually shortened to rw) let’s you replace the left hand side of an equality
with the right hand side.

rw If f is a term of type P = Q (or P ↔ Q), then
rw f, searches for P in the target and replaces it with Q.
rw ←f, searches for Q in the target and replaces it with P.

Additionally, if hr : R is a hypothesis, then
rw f at hr, searches for P in the expression R and replaces it with Q.
rw ←f at hr, searches for Q in the expression R and replaces it with P.

Mathematically, this is saying “because P = Q, we can replace P with Q (or the other way around)”.

To get the left arrow, type \l. If you want to rewrite a bunch of things in a row, you can type rw [h1, h2, h3],.

import tactic data.nat.basic
open nat

/--

``rw``

If ``f`` is a term of type ``P = Q`` (or ``P ↔ Q``), then
``rw f`` replaces ``P`` with ``Q`` in the target.
Other variants:

``rw f at hp``, ``rw ←f``, ``rw ←f at hr``.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

theorem add_self_self_eq_double
(x : N)

: x + x = 2 * x :=
begin

rw two_mul,
end

/-
For the following problem, use

mul_comm a b : a * b = b * a
-/

example (a b c d : N)
(hyp : c = d * a + b)
(hyp' : b = a * d)

: c = 2 * (a * d) :=
begin

sorry,
end

/-
For the following problem, use

(continues on next page)

16 Chapter 3. Logic in Lean - Part 2

Lean at MC2022, Release 0.1

(continued from previous page)
nat.sub_self (x : N) : x - x = 0

-/

example (a b c d : N)
(hyp : c = b * a - d)
(hyp' : d = a * b)

: c = 0 :=
begin

sorry,
end

3.4.1 Surjective functions

Recall that a function f : X → Y is surjective if for every y : Y there exists a term x : X such that f(x) = y.
In type theory, for every function f we can define a corresponding proposition surjective (f) := ∀ y, ∃ x,
f x = y and a function being surjective is equivalent to saying that the proposition surjective(f) is inhabited.

import tactic
open function

/--

``rw``

If it gets hard to keep track of the definition of ``surjective``,
you can use ``rw surjective,`` or ``rw surjective at h,``
to get rid of it. (This rewrites using the definition of surjective).
Typing ``rw surjective at *,`` will unfold it
everywhere at once.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

variables X Y Z : Type
variables (f : X → Y) (g : Y → Z)

/-
surjective (f : X → Y) := ∀ y, ∃ x, f x = y

You may also want to try ``function.comp_app``
-/

example
(hf : surjective f)
(hg : surjective g)
: surjective (g ◦ f) :=

begin
sorry,

end

example
(hgf : surjective (g ◦ f))
: surjective g :=

begin
(continues on next page)

3.4. Equality 17

Lean at MC2022, Release 0.1

(continued from previous page)
sorry,

end

18 Chapter 3. Logic in Lean - Part 2

CHAPTER

FOUR

INFINITELY MANY PRIMES

Today we will prove that there are infinitely many primes using mathlib library. Our focus will be on how to use the
library to prove more complicated theorems. Remember to always save your work. First, we’re going to need to learn
how Lean deals with divisibility of natural numbers.

4.1 Divisibility and Primes

In mathlib, divisibility for natural numbers is defined as the following proposition.

a | b := (∃ k : N, a = b * k)

For example, 2 | 4 will be a proposition ∃ k : N, 4 = 2 * k. Very important. The statement 2 | 4 is
not saying that “2 divides 4 is true”. It is simply a proposition that requires a proof. Warning: If you need to type the
divisibility symbol, type \mid. This is not the vertical line on your keyboard.
Similarly, the mathlib library also contains a definition of prime. It’s a little complicated, but the library has this theorem
connecting it back to the definition you know:

theorem nat.prime_def_lt'' {p : N} :
nat.prime p ↔
2 ≤ p -- p is at least 2
∧ -- and
∀ {m : N}, m | p, m = 1 ∨ m = p -- if m divides p, then m = 1 or m = p.

Same as with divisibility, for every natural number n, nat.prime n is a proposition. So that nat.prime 101
requires a proof. It is possible to go down the rabbit hole and prove it using just the axioms of natural numbers. However,
this is exhausting work, and exactly the kind of thing we’d rather the computer do!

4.2 Trivial calculations

Here are two of Lean’s many tactics that automate basic calculations for us.

19

https://leanprover-community.github.io/mathlib_docs/

Lean at MC2022, Release 0.1

norm_numnorm_num is Lean’s calculator. If the target has a proof that involves only natural numbers and arithmetic
operations, then norm_num will close this goal. This is usually the most powerful tactic for dealing with
natural numbers.
If hp : P is an assumption then norm_num at hp, tries to simplify hp using basic arithmetic
operations.

ring_nf ring_nf, is Lean’s algebraic manipulator. If the target has a proof that involves only addition and
multiplication, then ring_nf, will close the goal.
If hp : P is an assumption then ring_nf at hp, tries to simplify hp using basic algebraic
operations.

linar-
ith

linarith, is Lean’s inequality solver. It can read and use your hypotheses, and can sometimes also
solve facts that aren’t explicitly about inequalities.

import tactic data.nat.prime

/--

``norm_num``

Useful for arithmetic of natural numbers.

``ring_nf``

Useful for basic algebra with + and *.

``linarith``

Useful for inequalities.

Delete the ``sorry,`` below and replace them with a legitimate proof.

--/

example : 1 > 0 :=
begin

sorry,
end

example : 101 | 2020 :=
begin

sorry,
end

example : nat.prime 101 :=
begin

sorry,
end

example (m a b : N) : m^2 + (a + b) * m + a * b = (m + a) * (m + b) :=
begin

sorry,
end

example (a b c : N) : a < b → b ≤ c → a < c :=
begin

(continues on next page)

20 Chapter 4. Infinitely Many Primes

Lean at MC2022, Release 0.1

(continued from previous page)
sorry,

end

example (m a b : N) : m + a | m^2 + (a + b) * m + a * b :=
begin

sorry,
end

-- try ``rw nat.prime_def_lt'' at hp,`` to get started
example (p : N) (hp : nat.prime p) : ¬ (p = 1) :=
begin

sorry,
end

example (a b : N) : ¬ a ≤ b → b < a :=
begin

sorry,
end

4.3 Creating subgoals

Often when we write a long proof in math, we break it up into simpler problems. This is done in Lean using the have
tactic.

have have hp : P, creates a new goal with target P and adds hp : P as a hypothesis to the original goal.

The use of have that we have already seen is related to this one. When you use the tactic have hq := f(hp),
Lean is internally replacing it with have hq : Q, refine f(hp),.
have is crucial for being able to use theorems from the library. To use these theorems you have to create terms that
match the hypothesis exactly. Consider the following example. The type n > 0 is not the same as 0 < n. If you need
a term of type n > 0 and you only have hn : 0 < n, then you can use have hn2 : n > 0, linarith,
and you will have constructed a term hn2 of type n > 0.
We will need the following lemma later. Remember to save your proof. (Here’s a hint if you need one.)

import tactic data.nat.prime
open nat

/--

``have``

``have hp : P,`` creates a new goal with target ``P`` and
adds ``hp : P`` as a hypothesis to the original goal.

You'll need the following theorem from the library:

nat.dvd_sub : n ≤ m → k | m → k | n → k | m - n

(Note that you don't need to provide n m k as inputs to dvd_sub
Lean can infer these from the rest of the expression.
More on this tomorrow.)

(continues on next page)

4.3. Creating subgoals 21

Lean at MC2022, Release 0.1

(continued from previous page)

Delete the ``sorry,`` below and replace it with a legitimate proof.

--/

theorem dvd_sub_one {p a : N} : (p | a) → (p | a + 1) → (p | 1) :=
begin

sorry,
end

4.4 Infinitely many primes

We’ll now prove that there are infinitely many primes. The strategy is to show that there is a prime greater than n, for
every natural number n. We will choose this prime to be smallest non-trivial factor of n! + 1. We’ll need the following
definitions and theorems from the library.
Primes

• m | n := ∃ k : N, m = n * k

• m.prime := 2 ≤ p ∧ (∀ (m : N), m | p → m = 1 ∨ m = p)

• nat.prime.not_dvd_one : (prime p) → ¬ p | 1

Factorials
• factorial n is defined to be n!
• factorial_pos : ∀ (n : N), 0 < factorial n

• dvd_factorial : 0 < m → m ≤ n → m | factorial n

Smallest factor
• n.min_fac is defined to be the smallest non-trivial factor of n
• min_fac_prime : n ̸= 1 → n.min_fac.prime

• min_fac_pos : ∀ (n : N), 0 < n.min_fac

• min_fac_dvd : ∀ (n : N), n.min_fac | n

Check out data.nat.prime for more theorems about primes. The exercise below is very open-ended. You should take your
time, check the goal window at every step, and sketch out the proof on paper whenever you get lost.

import tactic data.nat.prime
noncomputable theory
open_locale classical

open nat

theorem dvd_sub_one {p a : N} : (p | a) → (p | a + 1) → (p | 1) :=
begin

sorry,
end

/-
dvd_sub_one : (p | a) → (p | a + 1) → (p | 1)

(continues on next page)

22 Chapter 4. Infinitely Many Primes

https://leanprover-community.github.io/mathlib_docs/data/nat/prime.html

Lean at MC2022, Release 0.1

(continued from previous page)
m | n := ∃ k : N, m = n * k
m.prime := 2 ≤ p ∧ (∀ (m : N), m | p → m = 1 ∨ m = p)
nat.prime.not_dvd_one : (prime p) → ¬ p | 1

factorial n is defined to be n!
factorial_pos : ∀ (n : N), 0 < factorial n
dvd_factorial : 0 < m → m ≤ n → m | factorial n

n.min_fac is defined to be the smallest non-trivial factor of n
min_fac_prime : n ̸= 1 → n.min_fac.prime
min_fac_pos : ∀ (n : N), 0 < n.min_fac
min_fac_dvd : ∀ (n : N), n.min_fac | n
-/

theorem exists_infinite_primes (n : N) : ∃ p, nat.prime p ∧ p ≥ n :=
begin

set p := (n.factorial + 1).min_fac, -- Use `set` instead of `have` when you're just␣
↪→making an abbreviation for a number.
sorry,

end

4.5 Final remarks

It would be great if there was a one-to-one correspondence between “hand-written proofs” and proofs in Lean. But that
is far from the case. When we write proofs we leave out a lot of details without even realizing it and expect the reader to
be intelligent enough to fill them in. This is both a bug and feature. On the one hand this makes proofs readable. On the
other hand too many “obviously true” arguments make proofs undecipherable and often wrong.
Unlike human readers, computers are pretty dumb (as of writing these notes). They can only do what you tell them to do
and you cannot expect them to “fill in the details”. But it is humanly impossible to teach a computer every single trivial
fact about, say the natural numbers. The Lean math library contains a lot of trivial theorems but this collection is far from
comprehensive. So theorem proving is Lean often involves the following steps:

• Scan the library to see which definitions and theorems might be useful.
• Choose the right hypotheses and wording for your theorem to match the theorems in the library. (Sadly, changing
the wording slightly might end up making the proof infinitely harder to prove.)

• Break the theorem into small lemmas so that you can use the simplifiers more frequently.
As time goes on, we hope that theorem proving AIs can do more and more of this work and eventually eliminate the
difference between human proofs and machine proofs.

4.5. Final remarks 23

https://leanprover-community.github.io/mathlib_docs/

Lean at MC2022, Release 0.1

24 Chapter 4. Infinitely Many Primes

CHAPTER

FIVE

SQRT 2 IS IRRATIONAL

Today we will teach Lean that
√
2 is irrational. Let us start by reviewing some concepts we encountered yesterday.

5.1 Implicit arguments

Consider the following theorem which says that the smallest non-trivial factor of a natural number greater than 1 is a
prime number.

min_fac_prime : n ̸= 1 → n.min_fac.prime

It needs only one argument, namely a term of type n ̸= 1. But we have not told Lean what n is! That’s because if we
pass a term, say hp : 2 ̸= 1 to min_fac_prime then from hp Lean can infer that n = 2. n is called an implicit
argument. An argument is made implicit by using curly brackets { and } instead of the usual (and) while defining the
theorem.

theorem min_fac_prime {n : N} (hne1 : n ̸= 1) : n.min_fac.prime := ...

Sometimes the notation is ambiguous and Lean is unable to infer the implicit arguments. In such a case, you can force all
the arguments to become explicit by putting an @ symbol in from on the theorem. For example,

@min_fac_prime : (n : N) → n ̸= 1 → n.min_fac.prime

Use this sparingly as this makes the proof very hard to read and debug.

5.2 The two haves

We have seen two slightly different variants of the have tactic.

have hq := ...
have hq : ...

In the first case, we are defining hq to be the term on the right hand side. In the second case, we are saying that we do
not know what the term hq is but we know it’s type.
Let’s consider the example of min_fac_prime again. Suppose we want to conclude that the smallest factor of
10 is a prime. We will need a term of type 10.min_fac.prime. If this is the target, we can use apply
min_fac_prime,. If not, we need a proof of 10 ̸= 1 to provide as input to min_fac_prime. For this we’ll use

have ten_ne_zero : 10 ̸= 1,

25

Lean at MC2022, Release 0.1

which will open up a goal with target 10 ̸= 1. If on the other hand, you have another hypothesis, say f : P → (10
̸= 1) and a term hp : P, then

have ten_ne_zero := f(hp)

will immediately create a term of type 10 ̸= 1. More generally, remember that
1. “:=” stands for definition. x := ... means that x is defined to be the right hand side.
2. “:” is a way of specifying type. x : ... means that the type of x is the right hand side.
3. “=” is only ever used in propositions and has nothing to do with terms or types.

5.3 Sqrt(2) is irrational

We will show that there do not exist positive natural numbers m and n such that

2 * m ^ 2 = n ^ 2 -- (*)

The crux of the proof is very easy. You simply have to start with the assumption that m and n are coprime without any
loss of generality and derive a contradiction. But proving that without a loss of generality is a valid argument requires quite
a bit of effort. This proof is broken down into several parts. The first two parts prove (*) assuming that m and n are
coprime. The rest of the parts prove the without loss of generality part.
For this problem you’ll need the following definitions.

• m.gcd n : N is the gcd of m and n.
• m.coprime n is defined to be the proposition m.gcd n = 1.

The descriptions of the library theorems that you’ll be needing are included as comments. Have fun!

5.3.1 Lemmas for proving (*) assuming m and n are coprime.

/-
nat.prime.dvd_of_dvd_pow : ∀ {p m n : N}, p.prime → p | m ^ n → p | m

Challenge mode: start with nat.even_or_odd instead
-/
lemma two_dvd_of_two_dvd_sq {k : N} (hk : 2 | k^2) :

2 | k :=
begin

sorry,
end

lemma division_lemma_n {m n : N}
(hmn : 2 * m ^ 2 = n ^ 2)

: 2 | n :=
begin

sorry,
end

lemma div_2 {m n : N} (hnm : 2 * m = 2 * n) : (m = n) :=
begin

linarith,
end

(continues on next page)

26 Chapter 5. Sqrt 2 is irrational

Lean at MC2022, Release 0.1

(continued from previous page)

lemma division_lemma_m {m n : N}
(hmn : 2 * m ^ 2 = n ^ 2)

: 2 | m :=
begin

sorry,
end

5.3.2 Prove (*) assuming m and n are coprime.

/-
theorem nat.not_coprime_of_dvd_of_dvd : 1 < d → d | m → d | n → ¬m.coprime n
-/

theorem sqrt2_irrational' :
¬ ∃ (m n : N),
2 * m^2 = n^2 ∧
m.coprime n

:=
begin

rintro ⟨m, n, hmn, h_cop⟩,
-- these brackets let you combine ``rintro`` with (several iterations of) ``cases``
-- try using ``rintro h`` and then ``rcases h with ⟨m, n, hmn, h_cop⟩,`` instead
-- you get the brackets by typing ``\langle`` and ``\rangle``
sorry,

end

5.3.3 Lemmas for proving (*) assuming m ̸= 0

/-
pow_pos : ∀ {a : N}, 0 < a → ∀ (n : N), 0 < a ^ n
-/
lemma ge_zero_sq_ge_zero {n : N} (hne : 0 < n) : (0 < n^2)
:=
begin

sorry,
end

/-
nat.mul_left_inj : ∀ {a b c : N}, 0 < a → (b * a = c * a ↔ b = c)
-/
lemma cancellation_lemma {k m n : N}
(hk_pos : 0 < k^2)
(hmn : 2 * (m * k) ^ 2 = (n * k) ^ 2)
: 2 * m ^ 2 = n ^ 2
:=
begin

sorry,
end

5.3. Sqrt(2) is irrational 27

Lean at MC2022, Release 0.1

5.3.4 Prove (*) assuming m ̸= 0

/-
gcd_pos_of_pos_left : ∀ {m : N} (n : N), 0 < m → 0 < m.gcd n
gcd_pos_of_pos_right : ∀ (m : N) {n : N}, 0 < n → 0 < m.gcd n
exists_coprime : ∀ {m n : N}, 0 < m.gcd n → (∃ (m' n' : N), m'.coprime n' ∧ m = m' *␣
↪→m.gcd n ∧ n = n' * m.gcd n)
nat.pos_of_ne_zero : ∀ {n : N}, n ̸= 0 → 0 < n

-/
theorem wlog_coprime :

(∃ (m n : N),
2 * m^2 = n^2 ∧
m ̸= 0)
→ (∃ (m' n' : N),
2 * m'^2 = n'^2 ∧
m'.coprime n')

:=
begin

rintro ⟨m, n, hmn, hm0⟩,
set k := m.gcd n with hk,
-- this abbreviation reduces clutter
-- ``set`` is similar to ``have``
-- you can replace all the ``m.gcd n`` with ``k`` using ``rw ←hk,`` if needed
sorry,

end

theorem sqrt2_irrational'' :
¬ ∃ (m n : N),
2 * m^2 = n^2 ∧
m ̸= 0

:=
begin

sorry,
end

28 Chapter 5. Sqrt 2 is irrational

CHAPTER

SIX

BITS & PIECES

6.1 Namespaces

Lean provides us with the ability to group definitions into nested, hierarchical namespaces:

namespace mcsp
def tau := "TAU on T-F from 2-4"
#eval tau

end mcsp

def tau := "no TAU on S"
#eval tau
#eval mcsp.tau

open mcsp

#eval tau -- error
#eval mcsp.tau

When we declare that we are working in the namespace mcsp, every identifier we declare has a full name with prefix
“mcsp”. Within the namespace, we can refer to identifiers by their shorter names, but once we end the namespace, we
have to use the longer names.
The open command brings the shorter names into the current context. Often, when we import a theory file, we will want
to open one or more of the namespaces it contains, to have access to the short identifiers. Further if x is a term of type
nat and f is a term defined in namespace nat then nat.f x can be shortened to x.f. Note that N is just another
notation for nat.

6.2 Coercions

In type theory every term has a type and two terms of different types cannot be equal to each other. This makes it
impossible to write statements like |m|^2 = m^2 where m : Z and |m| : N is the absolute value of m. But in
math, we do want this statement to be true! The round about way to deal with this is through coercions. Lean will coerce
the above equality to live entirely in integers as, ↑|m|^2 = m^2. This is done using an injective function N → Z.
Sometimes it is possible (and necessary) to get rid of the coercions. For example, say we start out with ↑|m|^2 = m^2
and eventually reduce it to ↑|m|^2 = ↑1. The tactic for getting rid of coercions is norm_cast which will reduce the
above expression to |m|^2 = 1.

norm_castnorm_cast, tries to clear out coercions.
norm_cast at hp, tries to clear out coercions at the hypothesis hp.

29

Lean at MC2022, Release 0.1

import tactic data.nat.basic data.int.basic
noncomputable theory
open_locale classical

theorem sqrt2_irrational_nat :
¬ ∃ (m n : N),
2 * m^2 = n^2 ∧
m ̸= 0

:=
begin

sorry,
end

-- Assume the above theorem

lemma num_2 : (2 : Q).num = 2 :=
begin

sorry,
end

lemma denom_2 : (2 : Q).denom = 1 :=
begin

sorry,
end

/-
q.denom = denominator of q (valued in N)
q.num = numerator of q (valued in Z)

for integer m,
m.nat_abs = absolute value of m (valued in N)

int.nat_abs_mul_self' : ∀ (a : Z), ↑(a.nat_abs) * ↑(a.nat_abs) = a * a
int.coe_nat_inj : ∀ {m n : N}, ↑m = ↑n → m = n

rat.mul_self_denom : ∀ (q : Q), (q * q).denom = q.denom * q.denom
rat.mul_self_num : ∀ (q : Q), (q * q).num = q.num * q.num
rat.denom_ne_zero : ∀ (q : Q), q.denom ̸= 0

-/

theorem sqrt2_irrational :
¬ (∃ q : Q, 2 = q * q)
:=
begin

rintro ⟨q, h⟩,
have clear_denom := rat.eq_iff_mul_eq_mul.mp h,
sorry,

end

30 Chapter 6. Bits & Pieces

Lean at MC2022, Release 0.1

6.3 Type classes

Type classes are used to construct complex mathematical structures. Any family of types can be marked as a type class.
We can then declare particular elements of a type class to be instances. You can think of a type class as “template” for
constructing particular instances.
Consider the example of groups. A group is defined a type class with the following attributes.

structure group : Type u → Type u
fields:
group.mul : Π {α : Type u} [c : group α], α → α → α
group.mul_assoc : ∀ {α : Type u} [c : group α] (a b c_1 : α), a * b * c_1 = a * (b *␣
↪→c_1)
group.one : Π {α : Type u} [c : group α], α
group.one_mul : ∀ {α : Type u} [c : group α] (a : α), 1 * a = a
group.mul_one : ∀ {α : Type u} [c : group α] (a : α), a * 1 = a
group.inv : Π {α : Type u} [c : group α], α → α
group.mul_left_inv : ∀ {α : Type u} [c : group α] (a : α), a ¹ * a = 1

If you look at the source code you’ll see that the class group is built gradually by extending multiple classes.

class has_one (α : Type u) := (one : α)
-- a group has an identity element

class has_mul (α : Type u) := (mul : α → α → α)
-- a group has multiplication

class has_inv (α : Type u) := (inv : α → α)
-- a group has an inverse function

class semigroup (G : Type u) extends has_mul G :=
(mul_assoc : ∀ a b c : G, a * b * c = a * (b * c))
-- the multiplication is associative

class monoid (M : Type u) extends semigroup M, has_one M :=
(one_mul : ∀ a : M, 1 * a = a) (mul_one : ∀ a : M, a * 1 = a)
-- multiplication by one is trivial

class group (α : Type u) extends monoid α, has_inv α :=
(mul_left_inv : ∀ a : α, a ¹ * a = 1)
-- multiplication is associative

To define an arbitrary groupGwe first create it as a typeG : Type and thenmake it an instance ofgroup using[group
G]. You can also prove that existing types are instances of group using the instance keyword. Type classes allow
us to prove theorems in vast generalities. For example, any theorem about groups can immediately be applied to integers
once we show that integers are an instance of group. If you look at data.int.basic you’ll see that first fifty lines of code
prove that Z is an instance of several type classes.

import group_theory.order_of_element
import tactic

#print classes
#print instances inhabited

class cyclic_group (G : Type*) extends group G :=
(has_generator: ∃ g : G, ∀ x : G, ∃ n : Z, x = g^n)

(continues on next page)

6.3. Type classes 31

https://github.com/leanprover-community/mathlib/blob/e52108d/src/algebra/group/defs.lean
https://github.com/leanprover-community/mathlib/blob/d1e63f3/src/data/int/basic.lean

Lean at MC2022, Release 0.1

(continued from previous page)
/-
zpow_add : ∀ {G : Type u_1} [group G] (a : G) (m n : Z), a ^ (m + n) = a ^ m * a ^ n
add_comm : ∀ {G : Type u_1} [add_comm_semigroup G] (a b : G), a + b = b + a
-/

lemma mul_comm_of_cyclic
{G : Type*}
[hc: cyclic_group G]
(g : G)

: ∀ a b : G, a * b = b * a :=
begin

have has_generator := hc.has_generator,
sorry,

end

6.4 Recursion and Induction

Lots of things in Lean are defined using recursion and proved using induction. While this extends beyond just the natural
numbers, let’s try some familiar examples using the natural numbers and the familiar principle of induction.
First let’s see how to make a recursive definition. I’ll define afunction called sum_first : N → N so that
sum_first n is the sum of the first n natural numbers.

import data.nat.basic
import tactic

def sum_first :
N → N -- the type of the function you want to define recursively

| 0 := 0 -- the definition at 0
| (n + 1) := sum_first n + (n + 1) -- the definition at (n + 1), which can use the␣
↪→definition at n

Now let’s prove the famous closed formula for sum_first n, using induction. To do this, we’ll want the following two
tactics:
Now let’s try the proof. Remember that rw can be useful for unfolding definitions.

import data.nat.basic
import tactic

def sum_first :
N → N -- the type of the function you want to define recursively

| 0 := 0 -- the definition at 0
| (n + 1) := sum_first n + (n + 1) -- the definition at (n + 1), which can use the␣
↪→definition at n

/-- nat.succ_eq_add_one : ∀ (n : N), n.succ = n + 1 -/
theorem sum_first_formula : ∀ (n : N), 2 * sum_first n = (n + 1) * n :=
begin

sorry,
end

If you want more practice proving things about natural numbers, including plenty of induction, try the Natural Number
Game.

32 Chapter 6. Bits & Pieces

https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/
https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/

CHAPTER

SEVEN

PRETTY SYMBOLS IN LEAN

To produce a pretty symbol in Lean, type the editor shortcut followed by space or tab.

Unicode Editor Shortcut Definition
→ \to function or implies
↔ \iff if and only if
← \l used by the rw tactic
¬ \not negation operator
∧ \and and operator
∨ \or or operator
∃ \exists there exists quantifier
∀ \forall for all quantifier
| \mid divisibility1
N \nat type of natural numbers
Z \int type of integers
◦ \circ composition of functions
̸= \ne not equal to
⟨⟩ \langle and \rangle used to build complicated types out of simple types

1 Be very careful! The symbol for divisibility is not the | symbol on your keyboard. Lean will through a cryptic error if you use it.

33

Lean at MC2022, Release 0.1

34 Chapter 7. Pretty Symbols in Lean

CHAPTER

EIGHT

GLOSSARY OF TACTICS AND LEMMAS

Here’s a summary of all the tactics and some of the lemmas we will introduce in this class, as well as some other common
ones you may encounter.

8.1 Implications in Lean

re-
fine

If P is the target of the current goal and hp is a term of type P, then refine hp, will close the goal.
Mathematically, this saying “this is what we were required to prove”.
If you can’t fully close a goal, but want to work somewhat from the end, you can use _ to fill in the missing
pieces. For instance, if the target of the current goal is Q and f is a term of type P → Q, then refine
f _, changes the target to P.
If you can fully close a goal, you can also type exact hp,, which does pretty much the same thing.

rin-
tro

If the target of the current goal is a function P → Q, then rintro hp, will produce a hypothesis hp
: P and change the target to Q.
Mathematically, this is saying that in order to define a function from P to Q, we first need to choose
(introduce) an arbitrary element of P.
If you want to use this repeatedly, you can type rintro h1 h2 instead of rintro h1, and then
rintro h2,. If you want to use this to introduce a variable of a more complicated type that you would
then apply cases to, you can try something like rintro ⟨x1, x2, x3⟩, where ⟨⟩ are typed with
\langle` and ``\rangle.

have have is used to create intermediate variables.
If f is a term of type P → Q and hp is a term of type P, then have hq := f(hp), creates the
hypothesis hq : Q .
You can also create subgoals with have hp : P, which will create a separate goal to prove P. Once
you have closed this goal, you’ll have the hypothesis hp : P at your disposal.

set set is used to create intermediate variables or abbreviations. It’s pretty similar to have, with one im-
portant difference. If you type have x : X := y,, Lean remembers that x : X, but does not
remember that x = y. Meanwhile, set remembers, so if you type set x : X := y with hx,
you also get hx : x = y, which you can use to rewrite.

apply apply is used for backward reasoning.
If the target of the current goal is Q and f is a term of type P → Q, then apply f, changes target to
P.
Mathematically, this is equivalent to saying “because P implies Q, to prove Q it suffices to prove P”. This
is similar to using refine _,.

35

Lean at MC2022, Release 0.1

8.2 And / Or

cases cases is a general tactic that breaks a complicated term into simpler ones.
If hpq is a term of type P ∧ Q, then cases hpq with hp hq, breaks it into hp : P and hp
: Q.
If hpq is a term of type P × Q, then cases hpq with hp hq, breaks it into hp : P and hp
: Q.
If fg is a term of type P ↔ Q, then cases fg with f g, breaks it into f : P → Q and g :
Q → P.
If hpq is a term of type P ∨ Q, then cases hpq with hp hq, creates two goals and adds the
hypotheses hp : P and hq : Q to one each.

split split is a general tactic that breaks a complicated goal into simpler ones.
If the target of the current goal is P ∧ Q, then split, breaks up the goal into two goals with targets P
and Q.
If the target of the current goal is P × Q, then split, breaks up the goal into two goals with targets P
and Q.
If the target of the current goal is P ↔ Q, then split, breaks up the goal into two goals with targets
P → Q and Q → P.
You can also accomplish this with refine ⟨_, _⟩.

left If the target of the current goal is P ∨ Q, then left, changes the target to P.
right If the target of the current goal is P ∨ Q, then right, changes the target to Q.
rcases rcases is a more general form of cases. Needs the symbols ⟨⟩, which are typed with \langle and

\rangle.
For an example, say you have h : ∃ (m n : N), 2 * m ^ 2 = n ^ 2 ∧ 0 < m. Then
you can type rcases h with ⟨m, n, hmn, hme0⟩, to break h into its 4 component parts.

8.3 Negations and Proof by Contradiction

false.
elim

Not a tactic, but a lemma.
If P : Prop, then false.elim : false → P lets you prove P from a contradiction.

ex-
falso

Changes the target of the current goal to false.
The name derives from “ex falso, quodlibet” which translates to “from contradiction, anything”. You
should use this tactic when there are contradictory hypotheses present.

em Not a tactic, but a lemma.
If P : Prop, then em P : P ∨ ¬ P lets you use the law of the excluded middle on P.

by_casesIf P : Prop, then by_cases hp : P, creates two goals, the first with a hypothesis hp: P and
second with a hypothesis hp: ¬ P.
This lets you use the law of the excluded middle, combining em with cases.

by_contradictionIf the target of the current goal is Q, then by_contradiction, changes the target to false and adds
hnq : ¬ Q as a hypothesis.
Mathematically, this is proof by contradiction. This is essentially a combination ofrintrowithfalse.
elim.

push_negpush_neg, simplifies negations in the target.
For example, if the target of the current goal is ¬ ¬ P, then push_neg, simplifies it to P.
You can also push negations across a hypothesis hp : P using push_neg at hp,.

contrapose!If the target of the current goal is P → Q, then contrapose!, changes the target to ¬ Q → ¬ P.
If the target of the current goal is Q and one of the hypotheses is hp : P, then contrapose! hp,
changes the target to ¬ P and changes the hypothesis to hp : ¬ Q.
Mathematically, this is replacing the target by its contrapositive.

36 Chapter 8. Glossary of Tactics and Lemmas

https://en.wikipedia.org/wiki/Principle_of_explosion

Lean at MC2022, Release 0.1

8.4 Quantifiers

have If hp is a term of type ∀ x : X, P x and y is a term of type y then have hpy := hp(y) creates
a hypothesis hpy : P y.

rin-
tro

If the target of the current goal is ∀ x : X, P x, then rintro x, creates a hypothesis x : X and
changes the target to P x.

cases If hp is a term of type ∃ x : X, P x, then cases hp with x key, breaks it into x : X and
key : P x.
See also rcases to avoid using cases repeatedly.

use If the target of the current goal is ∃ x : X, P x and y is a term of type X, then use y, changes the
target to P y and tries to close the goal.
You can also use refine ⟨_, _⟩, and then you get two goals, one with target X, and the other is
the fact P y, where y is the witness you entered for X. If you already have the witness y, you may type
refine ⟨y, _⟩,.

8.5 Proving “trivial” statements

refl refl, proves things that are literally true by definition.
norm_numnorm_num is Lean’s calculator. If the target has a proof that involves only numbers and arithmetic

operations, then norm_num will close this goal.
If hp : P is an assumption then norm_num at hp, tries to use simplify hp using basic arithmetic
operations.

ring_nf ring_nf, is Lean’s symbolic manipulator. If the target has a proof that involves only algebraic opera-
tions, then ring_nf, will close the goal.
If hp : P is an assumption then ring_nf at hp, tries to use simplify hp using basic algebraic
operations.

linar-
ith

linarith, is Lean’s inequality solver.

simp simp, is a very complex tactic that tries to use theorems from the mathlib library to close the goal. You
should only ever use simp, to close a goal because its behavior changes as more theorems get added to
the library. If you really want to use simp, but it doesn’t close the goal, try squeeze_simp,, and
click the instructions given in the goal window.

8.6 Equality

rw If f is a term of type P = Q (or P ↔ Q), then
rw f, searches for P in the target and replaces it with Q.
rw ←f, searches for Q in the target and replaces it with P.

If additionally, hr : R is a hypothesis, then
rw f at hr, searches for P in the expression R and replaces it with Q.
rw ←f at hr, searches for Q in the expression R and replaces it with P.

Mathematically, this is saying because P = Q, we can replace P with Q (or the other way around).
You can also use this to unfold definitions, for instance if f : X → Y, then rw surjective,
will change the goal surjective f to ∀ (b : Y), ∃ (a : X), f a = b, so you can
see what you’re trying to prove. For this purpose, you could also use the tactic unfold, as in unfold
surjective,.

8.4. Quantifiers 37

Lean at MC2022, Release 0.1

8.7 Induction

in-
duc-
tion

If n : N is a natural number variable, P : N → Prop is a property of natural numbers, and you
want to prove P n using induction, then induction n using k ih, will create two goals.
One has target P 0, this is the base case.
The other has target P (k.succ), where k.succ = k + 1. (You can rewrite away the .succ with
nat.succ_eq_add_one.) You’re also provided an induction hypothesis, ih : P k.

refl refl, proves things that are literally true by definition. Often this will handle your base case.

38 Chapter 8. Glossary of Tactics and Lemmas

	Introduction
	What is Lean?
	How to use these notes
	Acknowledgments.
	Useful Links.

	Logic in Lean - Part 1
	Propositions as types
	Propositions in Lean
	Implication

	Implications in Lean
	And / Or
	Optional Sidenote on Brackets

	Negation
	Final Remarks

	Logic in Lean - Part 2
	Behind the scenes
	Proof irrelevance
	Proofs as functions
	Optional Sidenote on Lambda

	The Law of the Excluded Middle
	Quantifiers
	Barber paradox
	Mathcampers singing paradox
	Relationship conundrum

	Equality
	Surjective functions

	Infinitely Many Primes
	Divisibility and Primes
	Trivial calculations
	Creating subgoals
	Infinitely many primes
	Final remarks

	Sqrt 2 is irrational
	Implicit arguments
	The two haves
	Sqrt(2) is irrational
	Lemmas for proving (*) assuming m and n are coprime.
	Prove (*) assuming m and n are coprime.
	Lemmas for proving (*) assuming m ≠ 0
	Prove (*) assuming m ≠ 0

	Bits & Pieces
	Namespaces
	Coercions
	Type classes
	Recursion and Induction

	Pretty Symbols in Lean
	Glossary of Tactics and Lemmas
	Implications in Lean
	And / Or
	Negations and Proof by Contradiction
	Quantifiers
	Proving “trivial” statements
	Equality
	Induction

