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Shattering Sets

Let X be a set, and let F be a family of subsets of X. If A ⊆ X is a subset of X, then we define

F ∩A = {S ∩A : S ∈ F}.

We say that F shatters A if F ∩A is the whole powerset of A.

Problem 1. For some of the following families of sets, how big of a set A can you find that is
shattered by F?

• X = R, F is the set of intervals

• X is infinite, and F is the set of subsets of X of size at most d (where d is some natural
number)

• X = R2, F is the set of half-planes - one side of a line

• X = R2, F is the set of convex sets (a set S is convex when any line segment containing two
points of S is also contained in S)

• X = R2, F is the set of axis-aligned rectangles (sides are parallel to x- and y-axes)

• X = Rd, F is the set of half-spaces (a half-space is the the solution set of an inequality
a1x1 + · · ·+ adxd ≤ c for some numbers a1, . . . , ad, c)

Hint: See Radon’s Theorem below.

Call the largest d such that F shatters a set of size d the VC-dimension of F . If there’s no such
d, we say the VC-dimension of F is ∞.

Shatter Functions

We can also measure a degree of shattering with the shatter function. Define

πF (A) = |F ∩A|

and for n ∈ N,
πF (n) = max

|A|=n
|F ∩A|.

Note that F shatters a set of size n if and only if πF (n) = 2n.

Problem 2. Let X = R, and let F = {(a, b) : a < b} be the set of intervals. Calculate πF (n) for
all n.
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Problem 3. Let X = R2, and let F be the set of half-planes. Calculate πF (A) where A consists of
n points arranged around a circle.

Problem 4. Suppose X is a set and F is a finite set of subsets of X, with |F| = N . What can we
say about the shatter function πF (n)?

Dual Set Families

We can turn around any set family F on a set X, and get a new set system, called its dual.

Definition. Let F∗, the dual of F , be the set family on the set F , consisting of the sets

F∗ = {{S ∈ F : x ∈ S} : x ∈ X}.

Problem 5. Use a dual set family to explain what the lazy caterer’s problem (from the lecture at
the beginning of class) has to do with shattering.

Problem 6. Show that if F has finite VC-dimension, then so does F∗, and vice versa.
Specifically, if we know that F has VC-dimension at most d, what do we know about the VC-

dimension of F∗?

Background: Radon’s Theorem

Definition 0.1. The convex hull of a finite set A = {a1, . . . , an} in Rd is the intersection of all
half-spaces containing A.

We can also define the convex hull as consisting of all points c1a1 + · · ·+ cnan where each ci ≥ 0,
and c1 + · · ·+ cn = 1. (To calculate c1a1 + · · ·+ cnan where the cs are real numbers and the as are
points in space, multiply and add coordinatewise.)

Theorem 0.2 (Radon). Any set of d+ 2 points in Rd can be partitioned into two nonempty pieces
whose convex hulls intersect.

Extremely Optional Problems:

Problem 7. Prove that the two definitions of convex hull are equivalent.

Problem 8. Prove Radon’s Theorem, starting with the following linear algebra fact:
For any A = {a1, . . . , an} in Rd with n > d, there are real numbers c1, . . . , cn, at least one of

which is nonzero, such that
n∑

i=1

c1a1 + · · ·+ cnan = 0.

Shatter Functions - review from yesterday

We can measure a degree of shattering with the shatter function. Define

πF (A) = |F ∩A|

and for n ∈ N,
πF (n) = max

|A|=n
|F ∩A|.

Note that F shatters a set of size n if and only if πF (n) = 2n.
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Problem 9. Let X = R, and let F = {(a, b) : a < b} be the set of intervals. Calculate πF (n) for
all n.

Problem 10. Let X = R2, and let F be the set of half-planes. Calculate πF (A) where A consists
of n points arranged around a circle.

Problem 11. Suppose X is a set and F is a finite set of subsets of X, with |F| = N . What can we
say about the shatter function πF (n)?

The Big Lemmas

If we know every value of the shatter function πF (n), then we know the VC-dimension of F . Now
let’s figure out what the VC-dimension tells us about the shatter function.

Let’s start with the easy case.

Problem 12. Suppose F has infinite VC-dimension. What is πF (n)?

The harder direction is seeing what happens to the shatter function when the VC-dimension is
finite. We will find an upper bound on πF (n) that holds whenever we assume the VC-dimension of
F is at most d. This upper bound, together with our understanding of the infinite VC-dimension
case, are known as the Sauer-Shelah Lemma.

To prove this bound, let’s start by defining a new family of sets, which we can count more easily:
If F is a family of subsets of X, let SH(F) be the set of subsets of X shattered by F .

Problem 13. Suppose F has VC-dimension at most d, and X is finite with |X| = n. Find an upper
bound for |SH(F)|. Can you find a family F that satisfies that bound exactly?

Let fd(n) be the bound from that Problem 13. In the rest of this worksheet, we’ll prove this
lemma:

Lemma 0.3 (Sauer-Shelah). Let F be a family of subsets of X with VC-dimension at most d. Show
that πF (n) ≤ fd(n).

Problem 14. For each d, find a family F of VC-dimension d such that πF (n) = fd(n) for all d.

This problem sets up the strategy for proving the Sauer-Shelah lemma.

Problem 15. Assume that whenever F has VC-dimension at most d, and X is finite with |X| = n,
|F| satisfies the upper bound from Problem 13.

Show that for any set X, if F has VC-dimension at most d, then πF (n) satisfies that bound.
Find a family F that satisfies that bound exactly.

To complete the lemma, we need to show that whenever |X| = n and F has VC-dimension at
most d, we have |F| ≤ fd(n). Here are two approaches, you can choose either one:

Sauer-Shelah Lemma: Algorithmic Approach

Our first approach to proving the upper bound we want will be by incrementally swapping out the
family F for a different one. We assume that |X| = n and F has VC-dimension at most d, and we
will try to bound |F|.

Problem 16. Pick some x ∈ X. For every S ∈ F , if x ∈ S but S \ {x} 6∈ F , replace S with S \ {x}.
Show that SH(F ′) ≤ SH(F).

Problem 17. Iterate the process from the previous problem until you can’t anymore, and call that
family of sets G.

Show that G = SH(G), and conclude that |G| satisfies our bound. What does this tell us about
|F|?
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Pajor’s Lemma

There’s another way to prove the Sauer-Shelah Lemma, by proving an even stronger lemma.

Problem 18 (Pajor’s Lemma). Show that if X is finite, then F shatters at least |F| sets, so
|F| ≤ |SH(F)|.

Hint: Induction on |X|.

Problem 19 (Sauer-Shelah Lemma). Use Pajor’s Lemma to prove Sauer-Shelah.

Examples

Problem 20. Let X be a set, and let F1,F2 be two different families of subsets of X, each with
finite VC-dimension. Let F be the set of all sets S1 ∩ S2 where S1 ∈ F1 and S2 ∈ F2. Show that F
has finite VC-dimension.

What other families of sets can you build out of F1 and F2 and get the same shatter function
bound?

As we’ve seen, any set family with finite VC-dimension has a polynomial upper bound on πF (n).
We define the VC-density of F as the least d ∈ R (if it exists) such that there’s some constant C
with πF (n) ≤ Cnd for all n.

Problem 21. If we know the VC-dimension of F , what do we know about its VC-density? If we
know the VC-density of F , is there anything we can say about its VC-dimension?

Problem 22. Let X be a set, and let F1,F2 be two different families of subsets of X, with VC-
densities d1 and d2. Let F be the set of all sets S1 ∩ S2 where S1 ∈ F1 and S2 ∈ F2.

What do we know about the VC-density of F?

Problem 23. Let X be a set, and let F1,F2 be two different families of subsets of X, with VC-
densities d1 and d2.

What is the VC-density of F1 ∪ F2?

Problem 24. If P is a set of points in R2, and L is a set of lines, let

I(P,L) = {(p, `) : p ∈ `}

be the set of incidences. Let I(n) be the maximum of |I(P,L)| over all sets with |P | = |L| = n.
The Szemerédi-Trotter theorem says that there are constants C1 and C2 that

C1n
4/3 ≤ |I(P,L)| ≤ C2n

4/3.

Find a set family F with VC-density 4
3 - this shows it doesn’t have to be an integer. In fact,

VC-density can be any real number d with d ≥ 1, or 0.

Problem 25. If you F1,F2 be two different families of subsets of X, with VC-densities d1 and d2,
can you construct a set family with VC-density d1 + d2?

PAC Learning

For an application of VC-Dimension, let’s look at learning theory!
Let’s fix a set X, with a set family F . We have some way of generating random points in X.
I’m thinking of a secret set S ∈ F , and you’d like to guess S. In order to you to make your

guess, we get to pick n random points in X, and I have to tell you if they’re in S. It’s unlikely that
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your guess will be correct - there may be infinitely many sets in F that would give the same answer!
However, it’ll be good enough if your guess is approximately correct - but what’s a good notion of
error?

We’re going to say that the error of a guess S′ is the probability that a random point in X will
give a different answer between S and S′. That is - it’s the probability of getting a point in the
symmetric difference S∆S′ = (S \ S′) ∪ (S′ \ S). We have to decide how much of an error we’re ok
accepting - say we pick some ε > 0, and we’ll say you’re approximately correct when the probability
of S∆S′ is at most ε.

We also can’t completely guarantee that you’re approximately correct, because you could just get
really unlucky with the randomly-selected points. So we’ll settle for probably approximately correct
learning - we pick some δ > 0, and you’re doing well if you can be approximately correct with
probability ≥ 1− δ.

This depends on δ, ε, and the source of random points, but we’ll say F can be PAC learned when
for every δ, ε, there is some number n of guesses that’ll work, regardless of the source of random
points.

Error Family

Tomorrow, we’ll show that every family with finite VC-dimension can be PAC learned, and we’ll
even give an upper bound on the number of samples we need. To do that, we’re going to look first
at another related family - the error family of deviations from my secret set.

Definition. Suppose I’m thinking of a set S ∈ F . Define the set family ∆(S) = {S′∆S : S′ ∈ F}.

This actually shatters the same sets as F ! Suppose that A ∈ SH(F). Intuitively, we know
that each subset of A is produced by intersecting with something in F - by taking the symmetric
differences with S, these sets swap which subsets of A they carve out, so all subsets are still produced.

More precisely, for each set B ⊆ A, look at (B∆S) ∩ A - this is also a subset of A, so there is
S′ ∈ F with S′ ∩A = (B∆S) ∩A. Now look at (S′∆S) ∩A. This is

(S′ ∩A)∆(S ∩A) = ((B∆S) ∩A)∆(S ∩A) = ((B∆S) ∩ S) ∩A = B ∩A = B.

We’ll see that if we understand the shatter function of a set family, then any random sample of
enough points is (with high probability) going to intersect any large (high probability) sets in the
family. Applying this logic to the error family, we see that in the PAC learning setup, there’s a high
probability that our random sample will notice any large error sets, allowing us to avoid them and
be approximately correct.

PAC Learning Lower Bound

What does PAC learning have to do with shattering and VC-dimension? Suppose F shatters a set
{x1, . . . , xd}. We’re going to see that this situation makes F hard to learn. More specifically, we’re
going to see that it makes learning hard for some probability distribution - namely, when we choose
points uniformly from {x1, . . . , xd}.

In this situation, the error is 1
d |(S∆S′) ∩ {x1, . . . , xd}|. In particular, you only need to get a

similar intersection with {x1, . . . , xd}, so we could just assume F is the power set of {x1, . . . , xd}.
We’re going to see that if we shoot for error less than ε ≤ 1

8 with probability δ ≤ 1
8 , then no

matter what your guessing procedure is, you’ll have a bad probability of being approximately correct.
I’m going to choose a set in F uniformly at random, and we’ll see that there’s a high probability
you’re not doing well.

Suppose you try to guess my random set from d
2 data points. These data points are also random,

so there’s a chance of repetition - say we actually get m ≤ d
2 distinct points. So, maybe you know
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whether x1, . . . , xm are in my set, but you have no info at all about the rest of the d points, so you
get each of them wrong or right by coin flip. On average, you’ll get d−m

2 ≥ d
4 of them wrong, so

your average error is at least 1
4 . But what’s the probability that your error is more than 1

8?
Suppose the probability the error is more than 1

8 is P . No matter what, the error is at most 1.
So the average is at most 1

8 (1− P ) + P ≤ 1
8 + P , but we know the average is at least 1

4 , so P ≥ 1
8 .

Because this is the average chance of error over all of my choices for S ∈ F , there must be one
of them that’s at least this hard to guess! This tells us that to PAC learn F , you need at least d

2
data points. If F has infinite VC-dimension, you’ll never get there.

PAC Learning Upper Bound and Epsilon Nets

Meanwhile, if F has finite VC-dimension, your strategy will be simple: just guess some S′ compatible
with all n random data points. There’s not much else you can do. There always will be at least
one - my secret set S. We want to find out the probability that the n random data points are good
enough that you’re guaranteed to be approximately correct if you follow them.

That is, our data points are good when for every “big” error set S∆S′ ∈ ∆(S) with P[S∆S′] ≥ ε,
there is some data point in S∆S′, keeping us from picking S′.

Definition. We call a set of points A ⊆ X an ε-net for F if A∩S 6= ∅ for every S ∈ F of probability
≥ ε.

To finish finding a strategy for PAC learning, we just need to figure out how big n needs to be
for the probability of n random samples being an ε-net to be at least 1− δ.

Theorem. There is a constant C such that if F has VC-dimension at most d, then

C

(
1

ε
log

1

δ
+
d

ε
log

1

ε

)
random points have a probability at least 1− δ of being a ε-net.

Proof. We’ll basically prove that some number works, and skip some details of calculating how many
we need.

Let n be the number of samples we want to draw. First we draw n random points, A =
{x1, . . . , xn}, and then we draw another n random points, B = {xn+1, . . . , x2n}. If A fails to be a
ε-net, then there is some S ∈ F with P[S] ≥ ε that we’ve missed. We’ll see that the probability of
A failing is at most twice the probability that

• A fails

• B hits some big S that A missed, εn
2 times.

We’ll call this probability P .
If A fails, then for any big S that A missed, the average number of times that B hits A is

P[S]n ≥ εn. By the probability lemma below, n ≥ 8
ε , this number is at least half its average with

probability 1
2 . This means that the probability A fails is at most 2P .

We can then show P is small - this scenario isn’t very likely, by starting instead by picking 2n
points C = {x1, . . . , x2n}, and then sorting them randomly into A and B. In fact, for any multiset
C, this will be unlikely - so let C be fixed.

For this scenario to happen, from this perspective, we need

• some S ∈ F with P[S] ≥ ε

• S ∩ C contains at least εn
2 points

• when we choose which half of the points go to A, we take none of the points of S ∩ C.

6



Note that there are many choices of S that could make this happen - we can’t possibly account for
all of them individually. But actually, this only depends on S ∩ C - and there are only πF (2n) of
these!

Thus we can bound P by adding up the probabilities from each S∩C - call this subset D, because
we don’t actually depend which S gave us S ∩ C. The probability that when we randomly split C
into A and B, we end up with D ∩A = ∅, is(

n
|D|
)(

2n
|D|
) ≤ |D|−1∏

i=0

n− 1

2n− 1
≤ 1

2|D|
.

Because we only care about D with |D| ≥ εn
2 , we see that the total over all choices of D is at most(

2n

≤ d

)
2−

εn
2 ≤ Cnd2−

εn
2

for some choice of C. The exponential shrinks faster than the polynomial grows, so for large enough
n, this is less than 2δ, so the probability A fails is less than δ.

Problem 26. This “exercise left to the reader” isn’t that enlightening, but if you want, you can
calculate from what we have so far that

n = C

(
1

ε
log

1

δ
+
d

ε
log

1

ε

)
is big enough for some C.

HW: Probability Lemmas

I left out the proof of the following lemma, which is an example of a Chernoff bound :

Lemma. Let T be a random trial, which succeeds with probability p. We try T n times, indepen-
dently, and np ≥ 8. The probability that more than 1

2np trials succeed is at least 1
2 .

The intuition for this is as follows: We expect to succeed np times on average, and as n gets
bigger, the answer will get closer and closer to the average, by the law of large numbers. Being less
than half of the average is indeed rare.

The following exercises prove it, by first proving a bunch of classical probability theory results
about the average of a random variable, or as we usually say in probability theory, the expectation.
We’ll write P[A] to be the probability of an event A, and E[X] to be the expectation of the random
variable X.

Theorem (Markov’s Inequality). Let X be a random variable that only takes nonnegative values,
and let a > 0. Then

P[X ≥ aE[x]] ≤ 1

a
.

Problem 27. Let’s prove Markov’s Inequality. To do so, use another random variable Y , defined
by

Y =

{
0 X < aE[x]

aE[x] X ≥ aE[x]
.

How does E[X] compare to E[Y ]?
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Our further theorems and exercises will use the notion of variance, which measures how much a
random variable varies away from its expectation.

Definition. The variance of X is

Var[X] = E[(X − E[X])2].

Chebyshev’s Inequality says that we can use the variance of a random variable to bound how
often it’s particularly different than its average.

Theorem (Chebyshev’s Inequality). Let X be a random variable with finite variance. Then

P
[
|X − E[X]| ≥ k

√
Var[X]

]
≤ 1

k2
.

Problem 28. Prove Chebyshev’s Inequality.

One reason variance is so good to work with is that if we add two independent random variables,
the variances add:

Var[X + Y ] = Var[X] + Var[Y ].

Problem 29. Prove the above equation from the fact that if X and Y are independent,

E[XY ] = E[X]E[Y ].

Problem 30. Suppose X1, . . . , Xn are independent random variables, each of which is 1 with
probability p and 0 with probability 1− p, and let X = X1 + · · ·+Xn.

Calculate E[X] and Var[X].

Problem 31. Prove our probability lemma.
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