GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimensior Induction

o-minimal

p-adic

References

Bounds on the Sizes of Distal Cell Decompositions

Aaron Anderson

UCLA

March 20, 2021

Table of Contents

GSCL

Aaron Anderson Preliminaries

1 Preliminaries

- VC Density
- Distal Cell Decompositions
- Distal Exponent
- 2 Combinatorics
- 3 Dimension Induction
- 4 Weakly o-minimal
- 5 p-adic Cases

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

VC-Density

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Let \mathcal{M} be an \mathcal{L} -structure, $\varphi(x; y)$ an \mathcal{L} -formula, where x and y may be tuples of variables, with length |x| and |y|.

Definition

- Define π_φ(n) to be the maximum over all A ⊂ M^{|x|} with |A| = n of the number of subsets of A that can be written as φ(M^{|x|}, b) ∩ A for some b ∈ M^{|y|}.
- Define $vc(\varphi)$ to be the infimum of all reals d such that $\pi_{\varphi}(n) = \mathcal{O}(n^d)$, or ∞ if none exist.

Dual VC-Density

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimensior Induction

o-minimal

p-adic

References

Now let $\Phi(x; y)$ be a finite set of \mathcal{L} -formulas all of the form $\varphi(x; y)$, with fixed length |x| and |y|.

Definition

■ Define S^Φ(S) to be the set of complete Φ-types over a set S ⊆ M^{|y|} of parameters, or alternately, the set of maximal consistent subsets of

$$\{\varphi(x; b): \varphi \in \Phi, b \in S\} \cup \{\neg \varphi(x; b): \varphi \in \Phi, b \in S\}.$$

• Let $\pi_{\Phi}^*(n)$ be the maximum over all $S \subset M^{|y|}$ with |S| = n of $|S^{\Phi}(S)|$.

• Let $vc^*(\Phi)$ be the infimum of all d such that $\pi^*_{\Phi}(n) = \mathcal{O}(n^d)$, or ∞ if none exist.

Dual VC-Density Example

Figure: The maximum number of pieces that *n* slices cut a circle into[3]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dual VC-Density Example

GSCL

Aaron Anderson

- Preliminaries VC Density Cell Decomps Distal Exponent
- Combinatorics

Dimensior Induction

o-minimal

p-adic

References

- Let $\mathcal{M} = \langle \mathbb{R}; 0, 1, +, -, \cdot, \leq \rangle$, and let $\varphi(x; y)$ be $y_1x_1 + y_2x_2 \leq 1$, with $\Phi = \{\varphi\}$.
- For each $b \in M^2$, $\varphi(M; b)$ is a half-plane.
- π^{*}_Φ(n) is the maximum number of pieces that n half-planes cut ℝ² into.

By induction, $\pi_{\Phi}^*(n) = \binom{n}{2} + \binom{n}{1} + \binom{n}{0} = \mathcal{O}(n^2)$, and $\operatorname{vc}^*(\Phi) = 2$.

VC-Density and NIP

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minima

p-adic

References

Fact

If
$$\varphi^*(y; x) \iff \varphi(x; y)$$
, then $\operatorname{vc}^*(\{\varphi\}) = \operatorname{vc}(\varphi^*)$.

Fact

$$vc(\varphi) = \infty \iff vc^*(\varphi) = \infty$$
. In this case, we call φ independent.

Definition

 \mathcal{M} is *NIP* (has the *Non-Independence Property*) when every $\varphi(x; y)$ has $vc(\varphi) < \infty$.

NIP Structures

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimensio Induction

o-minima

p-adic

References

Figure: [4]

Abstract Cell Decompositions

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Definition

- If A, X are sets, then X is crossed by A if $A \cap X \neq \emptyset$ and $X \setminus A \neq \emptyset$.
- If X ⊂ M^{|x|}, S ⊂ M^{|y|}, then X is crossed by Φ(x; S) if for some φ ∈ Φ and some b ∈ S, X is crossed by φ(M; b).

Definition

An abstract cell decomposition for $\Phi(x; y)$ is a function \mathcal{T} that assigns to each finite $S \subset M^{|y|}$ a set $\mathcal{T}(S)$ whose elements, called cells, are not crossed by $\Phi(x; S)$, and cover $M^{|x|}$ so that $M^{|x|} = \bigcup \mathcal{T}$.

Abstract Cell Decomposition Example

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Fact

Definition (Dual VC Cell Decomposition)

- Given Φ(x; y) and a finite S ⊂ M^{|y|}, let the cells of T_{vc}(S) correspond to the types in S^Φ(S):
- For each type $p(x) \in S^{\Phi}(S)$, take $\{x \in M^{|x|} : \mathcal{M} \models p(x)\}$ as a cell.

σ · · · · · · ·

 $|\mathcal{T}(S)| > |\mathcal{T}_{vc}(S)|.$

T_{vc} is an abstract cell decomposition for Φ
 If T is an abstract cell decomposition for Φ, then for all S,

・ロト・4日・4日・4日・ 日 うへの

Abstract Cell Decomposition Example

Figure: A cell of $\mathcal{T}_{vc}(S)$, where $\Phi(x; y) = \{x_1y_1 + x_2y_2 \leq 1\}$, and $\mathcal{M} = \langle \mathbb{R}; 0, 1, +, -, \cdot, \leq \rangle$.[1]

Distal Cell Decompositions

GSCL

Aaron Anderson

- Preliminaries VC Density Cell Decomps Distal Exponent
- Combinatorics

Dimension Induction

o-minimal

p-adic

References

Definition

A *distal* cell decomposition for $\Phi(x; y)$ is an abstract cell decomposition \mathcal{T} whose cells are *uniformly definable* in the following way:

- Each cell is defined by an instance of one of a finite set $\Psi(x; y_1, \ldots, y_k)$ of formulas where $|y_1| = \cdots = |y_k| = |y|$.
- For a given S, the set of potential cells is $\Psi(S) := \{ \psi(M^{|x|}; b_1, \dots, b_k) : \psi \in \Psi, b_1, \dots, b_k \in S \}$
- For each $\psi \in \Psi$, there is a formula $\theta_{\psi}(y; y_1, \dots, y_k)$.
- For each potential cell $\Delta = \psi(M^{|x|}; b_1, \dots, b_k)$, let $\mathcal{I}(\Delta) = \theta_{\psi}(M^{|y|}; b_1, \dots, b_k)$, then exclude Δ if $\mathcal{I}(\Delta) \cap S \neq \emptyset$.
- $\mathcal{T}(S) = \{\Delta \in \Psi(S) : S \cap \mathcal{I}(\Delta) = \emptyset\}$

Distal Structures

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent Combinatorics

Dimension Induction

o-minima

p-adic

References

Theorem (Chernikov, Galvin, Starchenko)

A structure M is distal if and only if every finite set of formulas $\Phi(x; y)$ admits a distal cell decomposition.

Distal Cell Decompositions can be thought of as a different perspective on Strong Honest Definitions, a characterization of distality.

Distal Structures

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Dimensior Induction

o-minima

Reference

Figure: [4]

Distal Shatter Function, Exponent, Density

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Given an abstract cell decomposition \mathcal{T} for $\Phi(x; y)$:

- Let $\pi_{\mathcal{T}}(n) = \max_{|S|=n} |\mathcal{T}(S)|$
- Say that \mathcal{T} has exponent d if $\pi_{\mathcal{T}}(n) = \mathcal{O}(n^d)$.
- Let the distal density of Φ be the infimum of all d such that there exists a distal cell decomposition for Φ of exponent d, or ∞ if no distal cell decomposition exists.

Fact

The distal density of Φ is at least the dual vc-density.

Corollary

Definition

All distal structures are NIP.

Distal Density for Certain Structures

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

\mathcal{M}	Dual VC-Density	Distal Density
o-minimal expansions of fields	<i>x</i>	2 x - 2 (1 if $ x = 1$)
weakly o-minimal structures	x	2 x - 1
ordered vector spaces over ordered division rings	x	x
\mathbb{Q}_p the valued field	2 x - 1	3 x - 2
\mathbb{Q}_p in the linear reduct	x	x

(VC-Density Calculations: Aschenbrenner, Dolich, Haskell, Macpherson, Starchenko, except \mathbb{Q}_p in the linear reduct by Bobkov)

Table of Contents

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction *o*-minimal *p*-adic References

Preliminaries VC Density Distal Cell Dec Distal Exponent 2 Combinatorics

3 Dimension Induction

- 4 Weakly o-minimal
- 5 *p*-adic Cases

Distal Cutting Lemma

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction *o*-minimal

p-adic

References

Definition

Given a real r and a family A_1, \ldots, A_n of subsets of a set X, an *r*-cutting is a family X_1, \ldots, X_t of sets such that $I = \bigcup_{i=1}^t X_i = X.$

• Each X_i is crossed by at most $\frac{n}{r}$ of the sets A_1, \ldots, A_n .

Theorem (Chernikov, Galvin, Starchenko)

Let $\varphi(x; y) \in \mathcal{L}$ be a formula admitting a distal cell decomposition \mathcal{T} of exponent d. Then for any finite $H \subseteq M^{|y|}$ of size n and any real r satisfying 1 < r < n, the family { $\varphi(M; a) : a \in H$ } admits an r-cutting X_1, \ldots, X_t with $t = \mathcal{O}(r^d)$. Moreover, the X_i s are intersections of at most two cells from $\mathcal{T}(H)$.

Zarankiewicz's Problem in Distal Structures

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction *o*-minimal

p-adic

References

Theorem

Let \mathcal{M} be a structure and $t \geq 2$. Assume that $E(x, y) \subseteq M^{|x|} \times M^{|y|}$ is a relation defined by a formula $\theta(x; y) \in \mathcal{L}$ that admits a distal cell decomposition of exponent t, and the graph E(x, y) does not contain any $K_{s,u}$. Then for any finite $P \subseteq M^{|x|}, Q \subseteq M^{|y|}, |P| = m, |Q| = n$, we have:

$$|E(P,Q)|=\mathcal{O}\left(m^{\frac{(t-1)s}{ts-1}}n^{\frac{t(s-1)}{ts-1}}+m+n\right).$$

Zarankiewicz's Problem: Specific Cases

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction *o*-minimal *p*-adic

Corollary

Assume that $E(x, y) \subseteq \mathbb{R}^{|x|} \times \mathbb{R}^{|y|}$ is a relation given by a boolean combination of exponential-polynomial (in)equalities, and the graph E(x, y) does not contain $K_{s,u}$. Then there is a constant $\alpha = \alpha(\theta, s, u)$ satisfying the following. For any finite $P \subseteq \mathbb{R}^{|x|}$, $Q \subseteq \mathbb{R}^{|y|}$, |P| = m, |Q| = n, we have:

$$|E(P,Q)| \leq \alpha \left(m^{\frac{(2|x|-2)s}{(2|x|-1)s-1}} n^{\frac{(2|x|-1)(s-1)}{(2|x|-1)s-1}+\varepsilon} + m + n \right)$$

Zarankiewicz's Problem: Specific Cases

GSCI

Aaron Anderson

Corollary

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction *o*-minimal *p*-adic References Assume that $E(x, y) \subseteq \mathbb{Q}_p^{|x|} \times \mathbb{Q}_p^{|y|}$ is a relation given by a boolean combination of valuational (in)equalities between restricted analytic functions, and the graph E(x, y) does not contain $K_{s,u}$. Then there is a constant $\alpha = \alpha(\theta, s, u)$ satisfying the following.

For any finite $P \subseteq \mathbb{Q}_p^{|x|}, Q \subseteq \mathbb{Q}_p^{|y|}$, |P| = m, |Q| = n, we have:

$$|E(P,Q)| \leq \alpha \left(m^{\frac{(3|x|-3)s}{(3|x|-2)s-1}} n^{\frac{(3|x|-2)(s-1)}{(3|x|-2)s-1}+\varepsilon} + m + n \right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Table of Contents

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal p-adic

- 1 Preliminaries
 - VC Density
 - Distal Cell Decompositions

- Distal Exponent
- 2 Combinatorics
- 3 Dimension Induction
- 4 Weakly o-minimal
- 5 p-adic Cases

Dimension Induction

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal *p*-adic

References

Theorem (A.)

Let \mathcal{M} be a structure in which all finite sets of formulas with |x| = 1 admit a distal cell decomposition \mathcal{T}_1 where every formula ψ of \mathcal{T}_1 refers to at most k parameters from S, and for some $d_0 \in \mathbb{N}$, all finite sets of formulas with $|x| = d_0$ have distal density at most r. Then all finite sets Φ of formulas with $|x| = d \ge d_0$ have distal density at most $k(d - d_0) + r$.

Dimension Induction Proof

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

References

The resulting cell decomposition generalizes the "vertical decomposition" of Chazelle, Edelsbrunner, Guibas, Sharir.

Figure: A "vertical decomposition" for lines in the plane[1]

Algorithmic Quantifier Elimination

GSCL

Aaron Anderson

- Preliminaries VC Density Cell Decomps Distal Exponent
- Combinatorics

Dimension Induction

- o-minimal
- *p*-adic
- References

- This construction is modeled after the "singly-exponential stratification" of semi-algebraic sets in [2].
- That cell decomposition can be used to algorithmically eliminate (existential) quantifiers, and Collins's cylindrical algebraic decomposition can be used to eliminate all quantifiers for semi-algebraic sets.
- Distal cell decompositions may be useful for efficient QE in several distal structures.

Table of Contents

GSCL

Aaron Anderson

- Preliminaries VC Density Cell Decomps Distal Exponent
- Combinatorics
- Dimension Induction
- o-minimal p-adic References
- Preliminaries
 VC Density
 Distal Cell Density
 Distal Exponent
 Combinatorics
 Dimension Industry
- 4 Weakly o-minimal

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

5 p-adic Cases

(Weakly) o-minimal structures

GSCL

Aaron Anderson

- Preliminaries VC Density Cell Decomps Distal Exponent
- Combinatorics
- Dimension Induction
- o-minimal
- *p*-adic
- References

Definition

Let \mathcal{M} be a structure whose language includes <, which is interpreted as a linear order.

- *M* is *weakly o-minimal* if every definable subset of *M*¹ is a finite union of <-convex pieces.
- *M* is *o-minimal* if those <-convex pieces are points and intervals.

DCDs in weakly o-minimal structures

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal *p*-adic

References

Theorem (A.)

If \mathcal{M} is a weakly o-minimal structure and $\Phi(x; y)$ is a finite set of formulas, then Φ has a distal cell decomposition of exponent 2|x| - 1.

Proof.

We construct a distal cell decomposition \mathcal{T}_1 in the case |x| = 1 with 2 parameters, with $|\mathcal{T}_1(S)| = \mathcal{O}(|S|)$, and then apply Dimension Induction.

If \mathcal{M} is an *o*-minimal expansion of a field, we can drop the exponent to 2|x| - 2, using Chernikov, Galvin and Starchenko's bound in the plane.

Linear o-minimal case

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal *p*-adic

References

Theorem

Let \mathcal{M} be an ordered vector space over an ordered division ring A, in the language $\mathcal{L} = \{0, +, -, <, c \cdot_{c \in A}\}$. let $\Phi(x; y)$ be a finite set of formulas in the language of \mathcal{M} . Then Φ has a distal cell decomposition of exponent |x|.

The same bound also holds for any *o*-minimal locally modular expansion of an abelian group, as well as \mathbb{Z} in Presburger's language.

Table of Contents

GSCL

Aaron Anderson

- Preliminaries VC Density Cell Decomps Distal Exponent
- Combinatorics
- Dimension Induction
- o-minimal
- *p*-adic
- References

1 Preliminaries

- VC Density
- Distal Cell Decompositions

- Distal Exponent
- 2 Combinatorics
- 3 Dimension Induction
- 4 Weakly o-minimal

The Valued Field Structure

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Let K be a P-minimal field (such as \mathbb{Q}_p) in the language \mathcal{L}_{Mac} :

Definition

$$\mathcal{L}_{\mathrm{Mac}} := \mathcal{L}_{\mathrm{ring}} \cup \{|, P_n : n \in \mathbb{N}\}.$$

Describe the valuation by interpreting $x|y \iff v(x) \le v(y)$. Interpret P_n so that $P_n(x) \iff \exists y, y^n = x$.

Theorem (Macintyre)

K has quantifier-elimination.

Distal Cell Decomposition for K

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Theorem

Let $\Phi(x; y)$ be a finite set of \mathcal{L}_{Mac} -formulas. Then Φ admits a distal cell decomposition with exponent 3|x| - 2.

Lemma

If |x| = 1, then Φ admits a distal cell decomposition with 3 parameters and exponent 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Linear Reduct of \mathbb{Q}_p

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Consider \mathbb{Q}_p in the language \mathcal{L}_{aff} :

Definition

$$\mathcal{L}_{\mathrm{aff}} := \{0, 1, +, -, \{c \cdot\}_{c \in \mathbb{Q}_p}, |, \{Q_{m,n}\}_{m,n \in \mathbb{N}}\}.$$

We interpret these symbols as the normal vector space structure, with | describing the valuation as above, and $\mathbb{Q}_p \models Q_{m,n}(a) \iff a \in \bigcup_{k \in \mathbb{Z}} p^{km}(1 + p^n \mathbb{Z}_p).$

Theorem (Leenknegt)

This structure on \mathbb{Q}_p has quantifier elimination. It is also a reduct of the standard \mathcal{L}_{Mac} -structure on \mathbb{Q}_p .

Distal Cell Decompositions in the Linear Reduct

GSCI

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minimal

p-adic

References

Theorem (Bobkov)

If $\Phi(x; y)$ is a finite set of \mathcal{L}_{aff} -formulas, then $vc^*(\Phi) \leq |x|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (A.)

 Φ admits a distal cell decomposition of exponent |x|.

References I

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimension Induction

o-minima

p-adic

References

 Artem Chernikov, David Galvin, Sergei Starchenko. "CUTTING LEMMA AND ZARANKIEWICZ'S PROBLEM IN DISTAL STRUCTURES". In: Selecta Mathematica New. Ser. 26 (2020).

 Bernard Chazelle, Herbert Edelsbrunner, Leonidas J Guibas, and Micha Sharir. "A singly exponential stratification scheme for real semi-algebraic varieties and its applications". In: *Theoretical Computer Science* 83.1 (1991), pp. 77–105.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References II

[3]

GSCL

Aaron Anderson

Preliminaries VC Density Cell Decomps Distal Exponent

Combinatorics

Dimensio Induction

o-minima

p-adic

References

Wikimedia Commons. File:Lazy Caterer's Sequence (Cuts).gif — Wikimedia Commons, the free media repository. [Online; accessed 22-May-2020]. 2019. URL: %5Curl%7Bhttps://commons.wikimedia.org/w/ index.php?title=File:Lazy_Caterer%27s_ Sequence_(Cuts).gif&oldid=377467786%7D.

[4] Gabriel Conant. Map of the Universe. [Online; accessed 22-May-2020]. 2020. URL:

%5Curl%7Bhttp://forkinganddividing.com%7D.