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Abstract. This article provides examples of distal metric structures. One source of examples are
metric valued fields. By analyzing indiscernible sequences, we show that real closed metric valued

fields are distal, and conclude that algebraically closed metric valued fields, while stable, have the
strong Erdős-Hajnal property, which we define appropriately for metric structures.

We find another example in topological dynamics: we study a metric structure whose automor-

phism group is the well-understood Polish group Hom+([0, 1]) of increasing homeomorphisms of
[0, 1]. This was known[17] to be NIP and highly unstable, and further properties were established

in [8]. We characterize models of its theory of this structure, which we call Dual Linear Continua,

up to isomorphism. We analyze their indiscernible sequences and prove that they are distal, as
well as constructing explicit distal cell decompositions.

1. Introduction

The school of model theory called neostability revolves around classifying first-order structures
based on combinatorial properties. The classes of structures studied include stable structures, such as
algebraically closed fields, where no infinite linear orders are definable, and NIP structures, including
the stable structures, whose definable sets are combinatorially well-behaved. Distal structures,
introduced in [18], are a class of first-order structures which are NIP, but given this, are as far as
possible from being stable. As such, orders tend to be central to the study of distal structures.
Frequently the structures themselves are defined as expansions of a linear order, such as o-minimal
structures and their generalizations (weakly or quasi-o-minimal structures). Examples of these
include dense linear orders, Presburger arithmetic, real closed fields, and various other natural
structures on R, potentially including much of the analytic structure.[19] Other examples introduce
an order through a valuation, where the order on the valued group still ensures that the structure
is distal. These includes several natural structures on the p-adics as well as some differential fields
of transseries.[3, 18]

Continuous logic provides a better logical framework for studying metric spaces and analytic
objects. The objects it studies, metric structures, provide a variety of new examples for model
theory. Various characterizations of distality were extended to the context of continuous logic in
[1, 2], so it is natural to ask which known metric structures are distal or have distal expansions.
However, many of the well-understood metric structures are either combinatorially ill-behaved, such
as Urysohn space, or are stable.[9, 11, 13, 14]. In particular, ordered metric structures have not been
studied, or even defined, outside of the context of ordered real closed metric valued fields.[7] In this
paper, we provide examples of distal metric structures and contrast them with notable non-examples
observed by James Hanson.

For combinatorial purposes, it often suffices to consider structures which admit distal expansions,
which are necessarily NIP. In classical logic, these structures are known to have the strong Erdös-
Hajnal property (SEH): definable relations satisfy a particular strengthening of Ramsey’s theorem.
No converse is known - that is, it is unclear if SEH, or any other purely combinatorial test, determines
whether an NIP structure has a distal expansion, although so far, the only way an NIP structure
has been shown to not have a distal expansion is by showing it lacks SEH.

In Section 2, we give a statement of SEH for metric structures. Any metric structure with a
distal expansion has this property as an easy corollary of work in [1], and in Section 3, we provide
an example of a stable metric structure (any algebraically closed metric valued field) that admits a
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distal expansion and thus has SEH. However, we will also see in Section 5 that at least in continuous
logic, there is another way of determining that common examples of stable structures do not admit
distal expansions.

In Section 3, we examine some metric valued fields. These structures are constructed by taking
a field with valuation in R≥0, and incorporating the valuation metric into the metric structure. In
[7], theories of algebraically and real closed metric valued fields are developed. In Section 3, we
show, using the indiscernible sequence definition, that real closed metric valued fields are distal. We
also show that algebraically closed metric valued fields are interpretable in real closed metric valued
fields, from which we conclude that these have the strong Erdös-Hajnal property, although they are
stable and thus not distal.

Section 4 explores a fundamentally different distal metric theory, which we call dual linear con-
tinua. Models of this theory consist of the set of functions from some linear continuum (such as the
linear order [0, 1]) to [0, 1] which are continuous, nondecreasing, and surjective, with a particular
structure placed upon them. In the case of the linear continuum [0, 1], the automorphism group of
this structure is the group of increasing homeomorphisms from [0, 1] to itself. This structure had
been studied before in [8] and in [17], where it had been shown to be NIP but decidedly not stable.
We show that in fact, the structure is distal, both by studying its indiscernible sequences and by
constructing explicit distal cell decompositions.

Finally, in Section 5, we examine some metric structures which are NIP but do not admit distal
expansions, suggested by James Hanson. These include any metric structure expanding a Banach
space, and in particular the Keisler randomization of any (metric) structure. This shows that unlike
stability [10] or NIP [4], distality is not preserved by taking randomizations.

For background on continuous logic, we refer to [9], for further notation and background assumed
throughout on distal metric structures in particular, we refer to [2].

Acknowledgements. We thank James Hanson for several helpful insights, some of which are de-
tailed in Section 5. The first author thanks Artem Chernikov for advising, and was partially sup-
ported by the Chateaubriand fellowship, the UCLA Logic Center, the UCLA Dissertation Year
Fellowship, and NSF grants DMS-1651321 and DMS-2246598. The second author was partially
supported by ANR project AGRUME (ANR-17-CE40-0026).

2. Strong Erdős-Hajnal

In addition to considering examples of distal metric structures, we will identify interesting reducts
of distal metric structures. Even if these reducts are no longer distal, they will retain properties
such as the strong Erdős-Hajnal property. In [12], it was shown that distality is equivalent to the
definable strong Erdős-Hajnal property, which implies the strong Erdős-Hajnal property for all of
its reducts. This characterization of distality was extended to metric structures in [1], and we will
now describe the strong Erdős-Hajnal property for reducts of distal metric structures. We define
homogeneity for sets and definable predicates as in [1]:

Definition 2.1. For i = 1, . . . , n, let Ai ⊆Mxi , let φ(x1, . . . , xn) be a definable predicate (possibly
with parameters) and let ε > 0. Then we say that (Ai : 1 ≤ i ≤ n) is (φ, ε)-homogeneous when for
all (ai : i ∈ I), (a′i : i ∈ I) ∈ A1 × · · · ×An, |φ(a1, . . . , an)− φ(a′1, . . . , a

′
n)| ≤ ε.

If for 1 ≤ i ≤ n, ψi(xi) are definable predicates (possibly with parameters), we say that (ψi(xi) :
1 ≤ i ≤ n) are (φ, ε)-homogeneous when the supports ψi(xi) > 0 are.

Fact 2.2 ([1, Corollary 5.7]). A theory T of continuous logic is distal if and only if every definable
predicate φ(x1, . . . , xn; y) has the definable strong Erdős-Hajnal property:

For every ε > 0, there exist definable predicates ψi(xi; zi) and δ > 0 such that if µ1 ∈Mx1
(M), . . . , µn ∈

Mxn
(M) are such that for i < n, µi is generically stable, and b ∈ My, then for any product

measure ω of µ1, . . . , µn, there are di ∈ Mzi such that ψi(xi; di) are (φ(x; b), ε)-homogeneous and∫
Sxi

(M)
ψi(xi; di) dµi ≥ δ for each i.
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As all counting measures are generically stable, we can deduce the following:

Lemma 2.3. Assume T is a distal theory in continuous logic. If φ(x1, . . . , xn) is a definable predicate
with parameters, then φ has the strong Erdős-Hajnal property: Then for every ε > 0, there is
some δ > 0 such that if A1, . . . , An are finite subsets of Mx1 , . . . ,Mxn respectively, then there are
B1, . . . , Bn with Bi ⊆ Ai and |Bi| ≥ δ|Ai| such that (Bi : 1 ≤ i ≤ n) is (φ, ε)-homogeneous.

Lemma 2.4. The strong Erdős-Hajnal property is closed under continuous combinations: if for
1 ≤ j ≤ n, definable predicates φj(x) = φj(x1, . . . , xm) have the strong Erdős-Hajnal property, and
u : [0, 1]n → [0, 1] is continuous, then u(φ1(x), . . . , φn(x)) also has the strong Erdős-Hajnal property.

Proof. Fix ε > 0, and Ai ⊆ Mxi finite for each 1 ≤ i ≤ m. By continuity, let δ > 0 be such that if
a, b ∈ [0, 1]n have maxi |ai − bi| ≤ δ in the sup metric, then |u(a)− u(b)| ≤ ε. By the strong Erdős-
Hajnal property of φ1, . . . , φn, there is some γ > 0 such that for each 1 ≤ j ≤ n, if Bi ⊆ Mxi are
finite, there are Ci ⊆ Bi with |Ci| ≥ γ|Bi| such that (C1, . . . , Cm) are (φj , δ)-homogeneous. Thus we

can set A0
i = Ai, and recursively define Aji such that Aji ⊆ A

j−1
i , |Aji | ⊆ γ|A

j−1
i |, and (Aj1, . . . , A

j
m)

is (φj , δ)-homogeneous. Then (An1 , . . . , A
n
m) will be (φj , δ)-homogeneous for all 1 ≤ j ≤ n, and thus

also (u(φ1, . . . , φn), ε)-homogeneous. Also, |Ani | ≥ δn|Ai|, and δ did not depend on the choice of
Ai. �

Lemma 2.5. The strong Erdős-Hajnal property is closed under uniform limits: if for j ∈ N, definable
predicates φj(x) = φj(x1, . . . , xm) have the strong Erdős-Hajnal property and converge uniformly to
φ(x), then φ(x) also has the strong Erdős-Hajnal property.

Proof. Fix ε > 0. Let N be large enough that supx |φN (x) − φ(x)| ≤ ε
3 . Then let δ > 0 be such

that if Bi ⊆Mxi are finite, there are Ci ⊆ Bi with |Ci| ≥ δ|Bi| such that (C1, . . . , Cm) are
(
φN ,

ε
3

)
-

homogeneous. Then if we fix Ai ⊆ Mxi finite for each 1 ≤ i ≤ m, there are Bi ⊆ Ai for each i
with |Bi| ≥ |Ai| and for all a, b ∈ B1 × · · · ×Bm, we have |φ(a)− φ(b)| ≤ |φ(a)− φN (a)|+ |φN (a)−
φN (b)|+ |φN (b)− φ(B)| ≤ ε. �

These lemmas show that in a quantifier-elimination language, to determine if all definable predi-
cates in a structure have the strong Erdős-Hajnal property, it suffices to check for atomic formulas.

We can also reduce checking the ε-strong Erdős-Hajnal property for all ε to a simpler criterion.

Lemma 2.6. A definable predicate φ(x1, . . . , xn) has the strong Erdős-Hajnal property if and only
if for all 0 ≤ r < s ≤ 1, there is some δ > 0 such that such that if A1, . . . , An are finite subsets of
Mx1 , . . . ,Mxn respectively, then there are B1, . . . , Bn with Bi ⊆ Ai and |Bi| ≥ δ|Ai| such that either
for all b ∈ B1 × · · · ×Bn, φ(b) < s, or for all b ∈ B1 × · · · ×Bn, φ(b) > r.

Proof. Suppose φ has the strong Erdős-Hajnal property, fix 0 ≤ r < s ≤ 1, and let 0 < ε < s − r.
Then we can find B1, . . . , Bn of adequate size that are ε-homogeneous, implying that either φ(b) > r
or φ(b) < s is true for all b ∈ B1 × · · · ×Bn.

Conversely, assume this new condition holds. We will prove for each n that φ has the 1
n -strong

Erdős-Hajnal property. By taking a finite minimum, we can find δ > 0 such that for all 0 ≤ i < n,
given A1, . . . , An, there are Bi ⊆ Ai and |Bi| ≥ δ|Ai| such that either for all b ∈ B1 × · · · × Bn,
φ(b) < i+1

n , or for all b ∈ B1 × · · · ×Bn, φ(b) > i
n . Then by a recursive application of this property

for each r = i
n ,

i+1
n , we can find Bi ⊆ Ai with |Bi| ⊆ δn|Ai| that satisfy this property for each

(r, s) simultaneously. Thus there must be some i such that b ∈ B1 × · · · × Bn, i
n ≤ φ(b) ≤ i+1

n , so

B1 × · · · ×Bn is
(
φ, 1

n

)
-homogeneous. It would suffice to reduce the size of the sets only log n times

by a binary search method, improving the constants if necessary. �

Before trying to determine which metric structures have the strong Erdős-Hajnal property for all
definable predicates, it makes sense to ask whether the metric has this property. This is true for
ultrametrics.
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Lemma 2.7. Let (X, d) be a bounded ultrametric space. The metric d(x, y) has the strong Erdős-
Hajnal property.

Proof. Fix 0 ≤ r < 1, and let A,B ⊆ X be finite. We will show that there are A0 ⊆ A,B0 ⊆ B
with |A0| ≤ 1

3 |A| and |B0| ≤ 1
3 |B| such that either for all (a, b) ∈ A0 × B0, d(a, b) ≤ r, or for all

(a, b) ∈ A0 ×B0, d(a, b) > r.
By the ultrametric criterion, A ∪ B can be covered with disjoint closed r-balls. Thus let A =

A1 ∪ · · · ∪An and B = B1 ∪ · · · ∪Bn, where A1 ∪B1 is contained in a closed r-ball, but for i 6= j, if
u ∈ Ai ∪Bi and v ∈ Aj ∪Bj , then d(u, v) > r. If there is some i with |Ai| ≥ 1

3 |A| and |Bi| ≥ 1
3 |B|,

then we can let A0 = Ai and B0 = Bi. Let S ⊆ {1, . . . , n} be the set of all i such that |Ai|
|A| ≥

|Bi|
|B| .

We can see that
∑
i∈S

|Ai|
|A| ≥

∑
i∈S

|Bi|
|B| = 1 −

∑
i 6∈S

|Bi|
|B| , from which we can deduce that either∑

i∈S
|Ai|
|A| ≥

1
2 or

∑
i 6∈S

|Bi|
|B| ≥

1
2 . Without loss of generality, assume the former. In this case, choose

a minimal set S′ ⊆ S with
∑
i∈S′

|Ai|
|A| ≥

1
3 . By minimality, for any one i′ ∈ S′,

∑
i∈S′,i6=i′

|Ai|
|A| <

1
3 ,

and thus
∑
i∈S′,i6=i′

|Bi|
|B| ≤

1
3 . By assumption, either |Ai′ | < 1

3 |A| and |Bi′ | < 1
3 |B|. As i′ ∈ S,

meaning |Ai′ |
|A| ≥

|Bi′ |
|B| , we can deduce that |Bi′ |

|B| <
1
3 , so

∑
i∈S′

|Bi|
|B| ≤

2
3 , and

∑
i 6∈S′

|Bi|
|B| ≥

1
3 . Thus

we can let A0 = ∪i∈S′Ai and let B0 = ∪i 6∈S′Bi, and get |A0| ≥ 1
3 |A| and |B0| ≥ 1

3 |B|. If a ∈ A0 and
b ∈ B, then there are i ∈ S′ and j 6∈ S′ with a ∈ Ai and b ∈ Bj , so as i 6= j, d(a, b) > r. �

3. Valued Fields

In [7], Ben Yaacov set up a framework for studying fields with (R≥0, ∗)-valued valuations as metric
structures. More specifically, the metric structures are projective spaces over such fields.

Definition 3.1. Given a field K, let KPn denote the n-dimensional projective space over K, whose
elements we write in homogeneous coordinates as [x0 : x1 : · · · : xn], which we will generally assume
satisfy maxi |xi| = 1.

Let LP1 be the language considering of the constant symbol ∞ and, for each n ∈ N and each
polynomial P (x1, . . . , xn) ∈ Z[x1, x1, . . . , xn], a relation symbol ||P (x̄)||.

Given a field K with a multiplicative valuation | · | taking values in R≥0, we interpret KP1 as an
LP1 -structure as follows, using homogeneous coordinates:

d([a : a∗], [b : b∗]) = |ab∗ − a∗b|
∞ = [1 : 0]

||P ([a1 : a∗1], . . . , [an : a∗n])|| = |Ph(a1, . . . , an, a
∗
1, . . . , a

∗
n)|,

where Ph is the homogenization of P .

Fact 3.2 ([7, Theorem 1.8]). There is a theory MV F in the language LP1 , whose models are (up to
isomorphism) exactly the projective lines of valued fields with complete valuation.

We also can consider a language with more sorts, to encompass all projective spaces over K in
one structure:

Definition 3.3. Let LP be the language with sorts (Pn : n ∈ N) with the following symbols:

• For each m,n, a function ⊗ : Pm × Pn → Pn+m+nm

• For each A ∈ SLn+1(Z), a function A : Pn → Pn
• For each n, a predicate symbol || · || on Pn.

Given any field K with a multiplicative valuation | · | taking values in R≥0, we construct an
LP-structure KP by interpreting Pn as KPn. We interpret the ⊗ symbols as Segre embeddings,
interpret the special linear transformation symbols with their natural action on Kn+1, each of which
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respects the quotient relation that defines KPn. We can then define the other symbols by

||[a0 : · · · : an]|| = |a0|
d(a, b) = max

i<j
|aibj − ajbi|.

Fact 3.4. The LP-structure KP and LP1-structure KP1 induced by a valued field K are biinter-
pretable.

The theory MV F admits a natural algebraically closed completion:

Fact 3.5 ([7, Lemma 2.2]). There is a LP1-theory ACMV F whose models are precisely the projective
lines over algebraically closed fields with nontrivial complete valuations.

To define the theory of real closed metric valued fields, we extend the language:

Definition 3.6. Extend LP1 to the language LoP1 by adding a for each such polynomial P (x1, . . . , xn)
an extra symbol 〈P (x̄)〉, which we interpret as

〈P (x̄)〉 = d(P (x̄),Sq),

where Sq is the (closed in any metric valued field) set of squares.

In a real closed ordered field, Sq is also the set of nonnegative elements, so we can naturally think
of this as encoding a linear ordering. This gives rise to the languages RCMV F and ORCMV F of
(ordered) real closed metric valued fields:

Fact 3.7 ([7, Proposition 3.6, Theorem 3.11]). There are a LP1-theory RCMV F and a LoP1-theory
ORCMV F such that the models of RCMV F are exactly the projective lines of real closed fields with
complete non-trivial valuations, and models of ORCMV F are exactly the projective lines of such
fields where the extra predicate is the distance predicate to the set of nonnegative elements.

Furthermore, any model of RCMV F admits a unique expansion modelling ORCMV F . In this
expansion, the extra predicate is the distance predicate to the set of nonnegative elements.

We can now show that these theories are distal.

Theorem 3.8. RCMVF is distal.

Proof. By [2, Theorem 5.22], it suffices to check that if (ai : i ∈ Q) + b + (cj : j ∈ Q) is an
indiscernible sequence, with (ai : i ∈ Q) + (cj : j ∈ Q) indiscernible over a singleton d, then
(ai : i ∈ Q) + b+ (cj : j ∈ Q) is indiscernible over d also.

Let i0 < · · · < in−1 ∈ Q and in+1 < · · · < i2n ∈ Q. We will show that for all in > in−1, and all
ϕ(x; y0, . . . , y2n), ϕ(d; ai0 , . . . , ain , cin+1

, . . . , ci2n) = ϕ(d; ai0 , . . . , ain−1
, b, cin+1

, . . . , ci2n).
By quantifier elimination, it suffices to show that if ϕ(x; y0, . . . , y2n) is an atomic LoP1 -formula

of either the form ‖P (x; ȳ)‖ or 〈P (x; ȳ)〉, then � ϕ(d; ā) = ϕ(d; ā′), whenever ā and ā′ are increasing
sequences of length 2n + 1 in (ai : i ∈ Q) + b + (cj : j ∈ Q). As in the proof of [7, Theorem 3.12],
we find that ϕ(x; ȳ) is a continuous combination of things of the form |x− f(ȳ)| and 〈x − f(ȳ)〉,
where f is a partial ∅-definable function. Thus it will suffice to show the desired result for ϕ of those
forms. Given y, let f0(y) = f(ai0 , . . . , ain−1

, y, cin+1
, . . . , ci2n). We wish to show that |d− f0(y)| and

〈d − f0(y)〉 are constant on the indiscernible sequence I = (ai : i > in−1) + b + (ci : i < in+1. The
sequence f0(y) : y ∈ I will itself be indiscernible, and thus monotone, and f0(y) : y ∈ I \ {b} is
indiscernible over d, so |d− f0(y)| and 〈d − f0(y)〉 are constant over I \ {b}.As for any values r, s,
the set of y such that |d− f0(y)| = r and 〈d − f0(y)〉 = s is order-convex, we see that |d− f0(y)|
and 〈d− f0(y)〉 must also be constant on all of I as desired. �

It is also possible to interpret ACMVF(0,0) in RCMVF, and thus show the (not definable) strong
Erdős-Hajnal property for that stable theory. In general, if K is a metric valued field, it is complete
and thus Henselian, so if L/K is a finite-degree field extension, and thus L is a metric valued field
with the unique valuation extending the valuation on K. We claim that L is interpretable in K,
and as a consequence, ACMVF(0,0) is interpretable in RCMVF.
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Theorem 3.9. Let K be a metric valued field, and let L be a finite extension of K, with the unique
valuation extending that of K. Then L is interpretable in K.

Proof. Let d = [L : K], and let α ∈ L be the root of a monic degree-d polynomial in K[X] such that
L = K(α).

Roughly speaking, we will represent an element W ∈ LP1 with two elements of KPd, spelling
out W and W−1 in the α-basis. From the construction of KP, we see that for any homogeneous

polynomial P ∈ Z[X0, . . . , Xd], |P (X0, . . . , Xd)|, evaluated at a representative where
⋂d
i=0 |Xi| = 1,

is a definable predicate on KPd without parameters. If instead P ∈ K[X0, . . . , Xd], this will be
definable with parameters.

Our interpretation will use the element [X0 : · · · : Xd] ∈ KPn to represent [
∑
i=0Xiα

i : Xd] ∈
LP1. This is well-defined, and it is surjective because any [Y : 1] can be represented by some
[X0 : · · · : Xd−1 : 1], and the single point at infinity [1 : 0] can be represented by [1 : 0 : · · · : 0]. We
wish to show that for any polynomial P ∈ Z[Y1, . . . , Yn, Y

∗
1 , . . . , Y

∗
n ], the predicate ||P ||, evaluated

at [X01 : · · · : Xd1], . . . , [X0n : · · · : Xdn], is a definable predicate. To do this, we will first show that
for any polynomial Q ∈ Z[Y1, . . . , Yn, Z1, . . . , Zn], homogeneous in each pair (Yi, Zi), the function∣∣∣∣∣Q

(∑
i=0

Xi1α
i, . . . ,

∑
i=0

Xinα
i, Xd1, . . . , Xdn

)∣∣∣∣∣
is a definable predicate. Then if Ph is the homogenization of P , we can evaluate ||P || by calculating∣∣∣∣∣Ph

(∑
i=0

Xi1α
i, . . . ,

∑
i=0

Xinα
i, Xd1, . . . , Xdn

)∣∣∣∣∣
and then correcting for the max norm |

∑
i=0Xijα

i|∨|Xdj | for each j, by dividing by the appropriate
power of |

∑
i=0Xijα

i|∨|Xdj |, which is itself a nowhere-zero definable predicate, as it is the maximum
of the valuations of two homogeneous polynomials, namely |Yj | and |Y ∗j |.

For all x ∈ L, we can understand the valuation |x| in terms of the norm |NL/K(x)| = |x|d,
as |NL/K(x)| = |

∏d
i=1 xi| = |x|d, where {x1, . . . , xd} are the conjugates of x under the d auto-

morphisms of L/K, each of which has |xi| = |x| by Henselianity of the complete field K. The

norm NL/K

(∑d−1
i=0 Xiα

i
)

can be defined as a determinant, and in particular is a homogeneous

degree d polynomial in K[X0, . . . , Xd−1], so if Q0, . . . , Qd−1 ∈ K[Xij : 0 ≤ i ≤ d, 1 ≤ j ≤ n]
are polynomials homogeneous in each tuple (X0i, . . . , Xdi) of the same multidegree (or zero), then

NL/K

(∑d−1
i=0 Qiα

i
)

is itself a homogeneous polynomial in K[Xij : 0 ≤ i ≤ d, 1 ≤ j ≤ n], so∣∣∣∑d−1
i=0 Qiα

i
∣∣∣ =

∣∣∣NL/K (∑d−1
i=0 Qiα

i
)∣∣∣1/d will be a definable predicate. For eachQ ∈ Z[Y1, . . . , Yn, Z1, . . . , Zn]

is homogeneous in each pair (Yi, Zi), with di = degYi
(Q) + degZi

(Q), then we can express

Q

(∑
i=0

Xi1α
i, . . . ,

∑
i=0

Xinα
i, Xd1, . . . , Xdn

)
=
d−1∑
i=0

Qiα
i,

where eachQi is homogeneous in each tuple (X0i, . . . , Xdi) with the same multidegree di =
∑d
j=0 degXji

Q,

unless it is zero. Thus |Q| =
∣∣∣∑d−1

i=0 Qiα
i
∣∣∣ is definable. �

4. Dual Linear Continua

In [8], Ben Yaacov analyzes an ℵ0-categorical metric structure whose homeomorphism group
is Hom+([0, 1]), the group of increasing homeomorphisms of [0, 1] under the topology of uniform
convergence. We call models of the theory of this structure dual linear continua, because we will
show that they are in correspondence with linear continua with endpoints, which are characterized
by the following definition and fact.
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Definition 4.1. A linear continuum is a dense linear ordering with the least upper bound property.

Fact 4.2. A linear order is connected in the order topology if and only if it is a linear continuum,
and it is connected and compact if and only if it is a linear continuum with endpoints.

Definition 4.3. Given a linear ordering L, let ML be the set of functions f : L→ [0, 1] such that

• f is nondecreasing,
• f is continuous with respect to the order topology on L,
• infx f(x) = 0,
• supx f(x) = 1.

We give ML the sup metric.

In [8], M[0,1] is given additional structure, which makes its automorphism group Hom+([0, 1]). If

f ∈ Hom+([0, 1]), then f acts on M[0,1] by composition, sending g ∈ M[0,1] to g ◦ f−1 ∈ M[0,1]. In
order to describe the analogous structure on ML for other linear orders, we will first describe the
type spaces of this structure.

Lemma 4.4. The type tp(f1, . . . , fn) is determined exactly by the image of the function (f1, . . . , fn) :
[0, 1]→ [0, 1]n.

Proof. In [8], it is shown that the type of (f1, . . . , fn) is determined by the function (g1, . . . , gn)
such that 1

n

∑n
i=1 fi = id and (g1, . . . , gn) ◦

(
1
n

∑n
i=1 fi

)
= (f1, . . . , fn). This correspondence is a

homomorphism between the space of such function tuples and the space of types. The function
(g1, . . . , gn) has the same image as (f1, . . . , fn), so the type of a tuple determines its image.

We now consider two tuples (f1, . . . , fn) and (g1, . . . , gn) with the same image, and show that they
have the same type. We may assume that 1

n

∑n
i=1 fi = 1

n

∑n
i=1 gi = id, and show that the tuples are

equal. For any t ∈ [0, 1], there is some t′ ∈ [0, 1] such that (f1(t), . . . , fn(t)) = (g1(t′), . . . , gn(t′)).
However,

∑n
i=1 fi(t) = nt and

∑n
i=1 fi(t

′) = nt′, so t = t′, and the tuples are equal.
�

Given that correspondence, if p ∈ Sn(∅) is a type in this theory, let im(p) be the image of any
realization of p in (M[0,1])

n. (Such a realization exists because M[0,1] is ℵ0-categorical and thus
ℵ0-saturated.) We will use this characterization to understand the topology and metric on the type
space, but first, some simple topological lemmas. (Recall that while in general, the metric on a type
space does not induce the topology, it does in the ℵ0-categorical case.)

Definition 4.5. If I is a set, give [0, 1]I the product order defined by (xi : i ∈ I) ≤ (yi : i ∈ I). A
chain from 0 to 1 in [0, 1]I is a set C ⊆ [0, 1]I which is a chain in the product order and contains
the constant tuples with values 0 and 1.

Lemma 4.6. Let I be a set, and let C ⊆ [0, 1]I be a chain from 0 to 1. Then the subset topology on
C is the order topology, and C is compact.

Proof. First, we note that for each i ∈ I, r ∈ [0, 1], there is some f ∈ C such that f(i) = r. If not,
then we may partition C with the two disjoint open sets {f ∈ C : f(i) < r} and {f ∈ C : f(i) > r},
contradicting connectedness.

To show the topologies agree, it suffices, without loss of generality, to show that for f ∈ C, the
closed interval [0, f ] ⊆ C is closed in the subset topology, and that for any r ∈ [0, 1] and i ∈ I, the
set {f ∈ C : f(i) ≤ r} is closed in the order topology.

By definition, the closed interval [0, f ] is the set
⋂
i∈I{g ∈ C : g(i) ≤ f(i)}, which is closed in the

subset topology.
Meanwhile, {f ∈ C : f(i) ≤ r} =

⋂
g∈C:g(i)>r[0, g]. For each g ∈ C with g(i) > r, it follows that

{f ∈ C : f(i) ≤ r} ⊆ [0, g] because C is linearly ordered. Also, for each s ∈ (r, 1], there is some
g ∈ C with g(i) = s, so

⋂
g∈C:g(i)>r[0, g] ⊆ {f ∈ C : f(i) ≤ r}.

In the order topology, by Fact 4.2, connectedness and endpoints imply compactness. �
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Lemma 4.7. Let I be a countable set. Then if C ⊆ [0, 1]I is a connected chain from 0 to 1, then
there are continuous, surjective, nondecreasing functions (fi : i ∈ I) such that im(fi : i ∈ I) = C.

Proof. By taking a bijection, we may assume that I is an initial segment of N. If I = {0, . . . , n}, we
let C ′ be the set of all c ∈ [0, 1]N such that c �I∈ C. This is clearly also a chain from 0 to 1, which
is connected because it is the image of C under a continuous map that just duplicates coordinates.
If C ′ is compact, then C is also the image of C ′ under a continuous map that deletes coordinates,
so C is compact. If there are continuous, surjective, nondecreasing functions (fi : i ∈ N) such that
im(fi : i ∈ I) = C ′, then (fi : i ≤ n) will suffice for C, so we may assume that I = N.

Define g : C → [0, 1] by g(c) =
∑
i c(i)2

−i. This is a strictly increasing continuous function,
which attains values 0 and 1. Because it is defined on a connected set, its image is connected,
so g is surjective. Because C is a chain and g is strictly increasing, g is also injective, so it is
a homeomorphism as its domain and codomain are compact Hausdorff. Thus we can let each
fi be the ith coordinate map of g−1. These are continuous, surjective, and nondecreasing, and
(fi : i ∈ I) = g−1, whose image is C. �

We now characterize the type spaces.

Lemma 4.8. The map im is an isometry between the type space Sn(∅) in the theory of M[0,1], and
the set of all connected chains from 0 to 1 in [0, 1]n, given the Hausdorff metric as compact subsets
of [0, 1]n, itself given the sup metric.

Proof. First we confirm that the image of im is what we claim, and then we will show that im, as a
function to the set of compact subsets of [0, 1]n with the Hausdorff metric, is an isometry. This is
an injective continuous map between compact Hausdorff spaces, so it is a homeomorphism onto its
image, and the rest of the lemma will follow from these two claims.

Clearly if (f1, . . . , fn) ∈ Mn, then im(f1, . . . , fn) is a connected chain from 0 to 1. If P ⊆ [0, 1]n

is a connected chain from 0 to 1, then by Lemma 4.7, there is some (f1, . . . , fn) : [0, 1]→ [0, 1]n with
P as its image, and each fi continuous, surjective, and nondecreasing. Thus P = im(f1, . . . , fn) and
f1, . . . , fn ∈Mn

[0,1], so such sets are exactly the images of n-types over M .

Now we check that the metric coincides with the metric on types. Let p, q ∈ Sn(∅). First we show
that d(im(p), im(q)) ≤ d(p, q). As

d(im(p), im(q)) = max

(
sup
x∈p

d(x, im(q)), sup
y∈im(q)

d(y, im(p))

)
and d(p, q) = inf f̄ ,ḡ:tp(f̄)=p,tp(ḡ)=q d(f̄ , ḡ), it suffices to show, without loss of generality, that for each

f̄ , ḡ such that tp(f̄) = p, tp(ḡ) = q, and each x ∈ im(p), d(x, im(q)) ≤ d(f̄ , ḡ). Let t be such that
x = (f̄)(t). Then

d(x, im(q)) ≤ d(f̄(t), ḡ(t)) ≤ d(f̄ , ḡ).

It now suffices to show that there exist f̄ , ḡ with tp(f̄) = p, tp(ḡ) = q such that d(f̄ , ḡ) ≤
d(im(p), im(q)). Let f̄∗, ḡ∗ be such that tp(f̄∗) = p, tp(ḡ∗) = q, and 1

n

∑n
i=1 f

∗
i = 1

n

∑n
i=1 g

∗
i = id.

We will show that there exists a connected chain C ⊆ [0, 1]2 containing (0, 0) and (1, 1), such that
for all (t, t′) ∈ C, d(f̄∗(t), ḡ∗(t′)) ≤ d(im(p), im(q)). By Lemma 4.7, there are continuous, surjective,
nondecreasing functions f ′, g′ such that im((f ′, g′)) = C. Then let f̄ = f̄∗ ◦ f ′ and ḡ = ḡ∗ ◦ g′. We
know that tp(f̄) = tp(f̄∗) = p and tp(ḡ) = tp(ḡ∗) = q, and we know that for each t, (f ′(t), g′(t)) ∈ C,
so d(f̄(t), ḡ(t)) ≤ d(im(p), im(q)), so these f̄ , ḡ will suffice.

To construct the chain C, first assume without loss of generality that d(im(p), im(q)) = supx∈im(p) d(x, im(q)).

Then for all t ∈ [0, 1], let Yt = {t′ : d(f∗(t), g∗(t′)) ≤ d(im(p), im(q))}. This is a closed interval in
im(q). It will always be nonempty by the assumption that d(im(p), im(q)) = supx∈im(p) d(x, im(q)).

For each t, let yt = minYt. Then t 7→ yt is a nondecreasing function from [0, 1] → [0, 1], so it is
piecewise continuous with countably many discontinuities. Thus filling in these discontinuities with
countably many vertical intervals turns the graph of this function into a path from (0, 0) to (1, 1),
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which we call C. It now suffices to show that for all (t, t′) ∈ C, d(f̄∗(t), ḡ∗(t′)) ≤ d(im(p), im(q)),
that is, t′ ∈ Yt. If t′ = yt, this follows by definition, so we may assume that (t, t′) lies on one of
the vertical segments, so lims→t− ys ≤ t′ ≤ lims→t+ ys. Because {(t, t′) : t′ ∈ Yt} is closed, we find
that lims→t−(s, ys) and lims→t+(s, ys) are both points of {(t, t′) : t′ ∈ Yt}. Thus t′ lies between two
points in Yt, which is an interval, so t′ ∈ Yt. �

Now we can define the structure on ML for any linear continuum with endpoints L, by defining
the type of any tuple in the type spaces Sn(∅) of the structure M[0,1], which from this point on we
simply call Sn.

Definition 4.9. Given a linear continuum with endpoints L and f1, . . . , fn ∈ML, let tp(f1, . . . , fn)
be the unique type p with im(p) = im(f1, . . . , fn).

For this to genuinely define a structure on ML, it suffices to check that for each C-Lipschitz n-ary
definable relation, which is interpreted as some h : Sn → [0, 1], that h ◦ tp : Mn

L → [0, 1] is also
C-Lipschitz. This follows from tp being a contraction. By the proof of Lemma 4.8, for any p, q ∈ Sn,
d(p, q) = inf f̄ ,ḡ∈ML:tp(f̄)=p,tp(ḡ)=q d(tp(f̄), tp(ḡ)), so this is indeed a contraction.

As the finite-dimensional type spaces coincide with those of M[0,1], these structures are all ele-
mentarily equivalent. We now characterize arbitrary type spaces over models of this theory.

Lemma 4.10. Let x be a possibly infinite variable tuple. The type space Sx consists of all connected
chains from 0 to 1 in [0, 1]x.

Proof. The type space Sx is the topological inverse limit of all Sy where y is a finite subtuple of
x. Thinking of each Sy as the set of connected chains from 0 to 1 in [0, 1]y, the restriction maps
Sy → Sz for z ⊆ y are given by restricting variables of chains. This means that Sx is homeomorphic
to the inverse image of these spaces Sy as a subset of [0, 1]x, and it suffices to determine which
sets in [0, 1]x have connected chains as each finite projection. Such sets are exactly inverse limits
of directed systems of connected chains from 0 to 1 in finite-dimensional spaces - that is, those sets
whose projections to finite-dimensional spaces are connected chains from 0 to 1. It is clear that
such projections are chains from 0 to 1 if and only if the original set is a chain from 0 to 1, and
that the projections of a connected set are all connected. It suffices now to show that a set X
whose finite-dimensional projections are connected chains from 0 to 1 is connected. Such a set X
is an inverse limit of closed sets by Lemma 4.7, so it is itself closed, and thus compact. Thus if
X is disconnected, there are basis open sets A,B such that X ∩ A,X ∩ B partition X. However,
using the standard basis of the topology, this means there is a finite subtuple y of x and open sets
A,B ⊆ [0, 1]y such that A,B partition π(X), where π projects [0, 1]x onto [0, 1]y. This contradicts
the connectedness of π(X). �

We can now fully characterize models of Th(M[0,1]).

Theorem 4.11. If M ≡ M[0,1], then M is isomorphic to ML for some linear continuum with
endpoints L.

Proof. Let p ∈ SM be the type of M enumerated as a tuple, and let L = im(p). By Lemma 4.10,
this is a connected chain from 0 to 1, and is thus a linear continuum with endpoints. We now define
f : M →ML. If m ∈M,x = (xm : m ∈M) ∈ L, then we define f(m)(x) = xm.

Let m1, . . . ,mn ∈M . We wish to show that tp(m1, . . . ,mn) = tp(f(m1), . . . , f(mn)), by showing
the images of the types are equal. We know that im(tp(m1, . . . ,mn)) is just the projection of
L = im(p) onto the coordinates (m1, . . . ,mn), coinciding precisely with im(tp(f(m1), . . . , f(mn))) =
im(f(m1), . . . , f(mn)). As f preserves types, it is also an isometry.

Let g ∈ ML, fix n ∈ N, and then let x1 < · · · < xn ∈ L be such that for each i, g(xi) = i
n+1 for

each 1 ≤ i ≤ n. Then for each 1 ≤ i < n, there is some mi with f(mi)(xi) < f(mi)(xi+1). As the

sequence 1
n−1

∑n−1
i=1 f(mi)(xj) for 1 ≤ j ≤ n is strictly increasing, there is a continuous monotone
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bijection θ : [0, 1] → [0, 1] such that for each 1 ≤ j < n, θ
(

1
n−1

∑n−1
i=1 f(mi)(xj)

)
= j

n+1 , and also

θ(0) = 0 and θ(1) = 1.
We claim that the function that sends g1, . . . , gn−1 ∈ M[0,1] to the function given by t 7→

θ
(

1
n−1

∑n−1
i=1 gi(t)

)
is definable. To show this, we first show that the predicate taking the aver-

age of n− 1 elements of M[0,1] is definable, and then check that composition with θ is definable. As
shown in [5], it suffices to show that these functions are type-definable. The graph of the average
function, viewed as a subset of the type space, consists of all connected chains from 0 to 1 through
[0, 1]n contained in the closed subset xn = 1

n−1

∑n−1
i=1 xi. The set of connected chains from 0 to 1

contained in a closed subset is closed, as the type space topology on chains is given by the Vietoris
topology. Thus the graph of the average function is closed, as is the graph of composition with θ,
consisting of all chains residing in the (closed) graph of θ.

By the definability of this function, as M ≡ M[0,1], there is some m ∈ M such that for each

(a1, . . . , an; b) ∈ (m1, . . . ,mn;m), b = θ
(

1
n−1

∑n−1
i=1 ai

)
. Thus for each 1 ≤ j ≤ n, f(m)(xj) =

θ
(

1
n−1

∑n−1
i=1 f(mi)(xj)

)
= j

n+1 = g(xj). Thus for all x ∈ L, f(m)(x) and g(x) lie in a common

interval
[

j
n+1 ,

j+1
n+1

]
, and thus d(f(m), g) ≤ 1

n+1 . Because f is an isometry and M is complete, this

shows us that f is a bijection. As f also preserves types, it is an isomorphism. �

4.1. Indiscernibles. The structure M[0,1] is known to be NIP and in a certain precise way, purely
unstable.[17, Corollary 4.17] We will study its indiscernible sequences, and show that it is distal, in
analogy to the ℵ0-categorical structure (Q, <), whose automorphism group is Hom+(Q ∩ [0, 1]).

We now show that all types in the theory of M[0,1] are determined by types on two variables.

Lemma 4.12. If p ∈ Sn, then p(x1, . . . , xn) is implied by
⋃
i<j p �xixj , where p �xixj is the restriction

of p to the variable tuple xixj.
In general, if p ∈ Sn and (a1, . . . , an) is such that for each i < j, (ai, aj) ∈ im(p �xixj ), then

(a1, . . . , an) ∈ im(p).

Proof. Let p ∈ Sn(∅) be a type with (ai, aj) ∈ im(p �xixj ) for each i < j. Let (f1, . . . , fn) be

a realization of p in Mn
[0,1]. Then consider the n closed intervals f−1

i ({ai}). Because (ai, aj) ∈
im(p �xixj

), the intervals f−1
i ({ai}) and f−1

j ({aj}) must nontrivially intersect. Closed real intervals
have the 2-Helly property - any family of intervals that intersect pairwise has a nontrivial intersection,
so (a1, . . . , an) must be in the image of (f1, . . . , fn).

If p, q are types such that for each i < j, p �xixj
= q �xixj

, then for each (a1, . . . , an) ∈ im(p), we
know that for each i < j, (ai, aj) ∈ im(q �xixj

), so (a1, . . . , an) ∈ im(q). Thus p = q, and these types
are determined by their restrictions to two variables. �

We now analyze (possibly finite) indiscernible sequences in structures elementarily equivalent to
M[0,1]. Whenever M ≡ M[0,1], by Theorem 4.11, we may assume that M = ML for some linear
continuum L.

Lemma 4.13. Let L be a linear continuum with endpoints and let (fi : i ∈ I) be an indiscernible
sequence in one variable in ML, and let (ai : i ∈ I) ∈ im(fi : i ∈ I). Then (ai : i ∈ I) is either
nondecreasing or nonincreasing.

Proof. It suffices to show that if (f, g, h) ∈ M3
L is indiscernible, and there is some t0 ∈ L such that

(f, g, h)(t0) = (a, b, c), then a ≤ b ≤ c or a ≥ b ≥ c.
If b = c, this is trivial, so we may assume without loss of generality that b < c. By indiscernibility,

there also exists t1 such that (f, g)(t1) = (b, c). Then because g(t0) = b < c = g(t1), we know that
t0 < t1, and thus a = f(t0) ≤ f(t1) = b. �
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Lemma 4.14. Let L be a linear continuum with endpoints and let (fi : i ∈ I) be an indiscernible
sequence in one variable in ML of length at least 3, and let i < j be elements of I, with (a, b) ∈
im(fi, fj). Then either (a, a) ∈ im(fi, fj) or (b, b) ∈ im(fi, fj).

Proof. Let (f, g, h) ∈M3
L be indiscernible, with (a, b) ∈ im(f, g). Without loss of generality, assume

a < b. There must be some c with (a, b, c) ∈ im(f, g, h), and by Lemma 4.13, b ≤ c. If b = c, then
(b, b) ∈ im(g, h) = im(f, g), and we are done. Otherwise, b < c.

Let t0, t1, t2 ∈ L be such that(f, h)(t0) = (a, b), (g, h)(t1) = (a, c), (f, g, h)(t2) = (a, b, c). By
monotonicity of h, t0 < t1, and by monotonicity of g, t1 < t2. By monotonicity of f , then, f(t1) = a,
so (a, a) ∈ im(f, g).

As the desired property is true for length-3 indiscernible sequences in ML, it is also true for all
longer indiscernibles. �

Lemma 4.15. Let L be a linear continuum with endpoints. Any indiscernible sequence in one
variable in ML is distal.

Proof. By [2, Lemma 5.3], it suffices to show that if (fi : i ∈ I) is a sequence of elements in ML,
and i0 < i1 are such that (i0, i1) is infinite and removing either fi0 or fi1 makes the sequence
indiscernible, then (fi : i ∈ I) is indiscernible. To do this, we show that tp(fi0 , fi1) = tp(fi, fj)
for all other i < j. This will even apply for sequences of finite length - if f1, . . . , f5 ∈ M are such
that (f1, f2, f3, f5) and (f1, f3, f4, f5) are indiscernible, then tp(f2, f4) = tp(f1, f3), and this will
imply indiscernibility for any infinite sequence containing these elements and satisfying the above
properties.

Let (a, b) ∈ im(f1, f3). By Lemma 4.14, either (a, a) ∈ im(f1, f3) or (b, b) ∈ im(f1, f3). Without
loss of generality, we may assume the former case. By Lemma 4.12 and indiscernibility, we see that
(a, a, b) ∈ im(f1, f3, f4), so there is some t with (f1, f3, f4)(t) = (a, a, b), and by Lemma 4.13, we
have that f2(t) = a as well, so (a, b) ∈ im(f2, f4), so tp(f2, f4) = tp(f1, f3) as desired. �

We now show that the interaction between tuples in any ML can be coded by their averages.

Lemma 4.16. Let L be a linear continuum with endpoints and let f̄ = (f1, . . . , fn) and ḡ =

(g1, . . . , gn) be tuples in ML. Define f̂ = 1
n

∑n
i=1 fn and ĝ = 1

n

∑n
i=1 gn. Then tp(f̄ , ḡ) is de-

termined by tp(f̄), tp(ḡ), tp(f̂ , ĝ).

Proof. Clearly im(f̄ , f̂) is determined by im(f̄). By the monotonicity of f̄ and the surjectivity of f̂ ,

for any a ∈ L, there is exactly one ā ∈ Ln such that (ā, a) ∈ im(f̄ , f̂). Thus im(f̄ , ḡ) consists of all

(ā, b̄) such that if â, b̂ are the averages of ā, b̄, then ā ∈ im(f̄), b̄ ∈ im(ḡ), and (â, b̂) ∈ im(f̂ , ĝ). �

Proposition 4.17. Then the structure M[0,1] is distal.

Proof. Let (fi : i ∈ I) be an indiscernible sequence in an elementary extension of M[0,1], which we
may assume is ML for some linear continuum L with endpoints. As in the proof of Lemma 4.15
but with longer tuples, we will just show that if (f1, . . . , f5) ∈ (Mn

L)5 is such that (f1, f2, f3, f5) and
(f1, f3, f4, f5) are indiscernible, then the tp(f2, f4) = tp(f1, f3).

Clearly for each 1 ≤ i, j ≤ 5, tp(fi) = tp(fj). For 1 ≤ i ≤ 5, let f̂i ∈ ML be the pointwise

average of the tuple fi. By indiscernibility of these subsequences, we can deduce that (f̂1, . . . , f̂5) is

indiscernible, so by the proof of Lemma 4.15, tp(f̂2, f̂4) = tp(f̂1, f̂3). By Lemma 4.16, this constrains
the types of the tuples enough that tp(f2, f4) = tp(f1, f3). �

We can say more about indiscernibles.

Theorem 4.18. If p ∈ S2(∅), then p is the type (fi, fj) with i < j in some infinite indiscernible
sequence (fi : i ∈ I) if and only if for all (a, b) ∈ im(p), either (a, a) ∈ im(p) or (b, b) ∈ im(p).
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Proof. Lemma 4.14 tells us that the type of any pair in an indiscernible has this property. Now
assume that p ∈ S2(∅) is such that for all (a, b) ∈ im(p), either (a, a) ∈ im(p) or (b, b) ∈ im(p).
We will show that for any n, there are f1, . . . , fn ∈ M[0,1] with tp(fi, fj) = p for all i < j, so by
compactness, in some elementary extension, there is an infinite sequence (fi : i ∈ I) such that for
all i < j, tp(fi, fj) = p. By Lemma 4.12, (fi : i ∈ I) is indiscernible.

As a consequence of [8, Theorem 3.2], there are f, g ∈M[0,1] such that tp(f, g) = p and f(t)+g(t)
2 =

t is the identity. Thus we may partition [0, 1] into three disjoint sets, A−, A0, A+, on which f − g is
respectively negative, 0, and positive, and note that A−, A+ are open while A+ is closed. Thus also
A− and A+ each consist of a countable number of open interval connected components.

We will define our functions fi on A0 and connected components of A+, A− separately, and we
will define them so that 1

n

∑n
i=1 fi(t) = t for all t. For each 1 ≤ i ≤ n, if t ∈ A0, then we let

fi(t) = t. Now let (a, b) be a connected component of A+, and we will define f1, . . . , fn on [a, b]. As
f − g is positive on (a, b), we see that a = g(a) ≤ g

(
a+b

2

)
< f

(
a+b

2

)
≤ f(b) = b. At least one of

f
(
a+b

2

)
, g
(
a+b

2

)
is in A0, and both are in [a, b], so it must be either a or b. However, these numbers

add to a + b, so they must be b and a respectively. By continuity and monotonicity, we see that
the other values of (c, d) ∈ im(p) with c+d

2 ∈ [a, b] are exactly the points of the form (t, a), (b, t) for
t ∈ [a, b]. Thus the values of (f1, . . . , fn) on [a, b] should all be of the form (b, . . . , b, t, a, . . . , a) for
t ∈ [a, b].

It will thus suffice to define f1, . . . , fn on [a, b] such that

• for all i, fi is continuous and monotone on [a, b],
• for all i, fi(a) = a and fi(b) = b,
• for all i < j, t ∈ [a, b], either fi(t) = b or fj(t) = a.

We define our functions on [a, b] by breaking up [a, b] into n subintervals of the form
[
ia+(n−i)b

n , (i+1)a+(n−i−1)b
n

]
,

where fi(t) = a on
[
a, ia+(n−i)b

n

]
, fi(t) increases from a to b linearly on

[
ia+(n−i)b

n , (i+1)a+(n−i−1)b
n

]
,

and fi(t) = b on
[

(i+1)a+(n−i−1)b
n , b

]
. If i < j, we see that for all t ∈ [a, b], either fi(t) = b or

fj(t) = a, so we are done.
If instead (a, b) is a connected component of A−, the functions can be defined similarly. As

we have defined continuous, monotone functions on closed intervals covering [0, 1] in a way that
endpoints agree and any pair (fi, fj) with i < j only takes values in im(p), we are done. �

4.2. Another Language. We now propose a new language for this structure. Because by Lemma
4.12, all types are determined by their restrictions to pairs of variables, it suffices to choose predicate
symbols that generate all definable predicates on two variables. By Stone-Weierstrass, it suffices to
find a set of definable predicates on two variables that separates points on the type space S2. For
this, we may take the family {φα(x, y) : α ∈ [0, 1] ∩ Q}, where when (a, b) ∈ im(tp(f, g)) is the
unique point such that a+ b = α, φα(f, g) = a. It is clear that each of these is 1-Lipschitz, so define
L to be the language consisting only of 1-Lipschitz binary predicates φα(x, y) for α ∈ [0, 1] ∩ Q.
Because the image of a type, and thus the type itself, is determined entirely by the value of these
atomic predicates, Th(M[0,1]) eliminates quantifiers in L.

We can also axiomatize Th(M[0,1]) fairly easily in this language. For simplicity, we extend the
language by quantifier-free definitions to include φα(x, y) for α ∈ [0, 1] by taking uniform limits.

Lemma 4.19. The theory of M[0,1] is axiomatized by the following theory, which we describe with
equations and inequalities for clarity:

{φα(x, y) + φα(y, x) = α : α ∈ [0, 1]}
∪{φα(x, y) ≤ φβ(x, y) : 0 ≤ α < β ≤ 1}

∪{ inf
x1,...,xn

∨
0≤k≤m,i 6=j

|φck(i)+ck(j)(xi, xj)− ck(i)| = 0 : c0, . . . , cm ∈ [0, 1]nis a finite chain}
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Proof. It suffices to require that for each pair of variables x, y, the set {(φα(x, y), φα(y, x)) : α ∈
[0, 1]} forms a valid type in S2, and to require that every type in each Sn is realized, which they are
in all structures as the theory is separably categorical. First, we require that φα(x, y)+φα(y, x) = α
with an axiom for each α. To check that {(φα(x, y), φα(y, x)) : α ∈ [0, 1]} is a chain from 0
to 1, we add axioms ensuring that φα(x, y) ≤ φβ(x, y) for each α < β. These also imply that
{(φα(x, y), φα(y, x)) : α ∈ [0, 1]} is connected, as the function α 7→ (φα(x, y), φα(y, x)) is 1-Lipschitz
and thus continuous.

Now to ensure that each type is realized. For each connected chain C ⊆ [0, 1]n from 0 to 1, and
each m ∈ N, let c0, . . . , cm be the points on C such that at ci,

∑n
i=1 xi = in

m . Then let (a1, . . . , an)
be such that {c0, . . . , cm} ⊆ im(a1, . . . , an). For each c ∈ im(a1, . . . , an), there is some i with
ci ≤ c ≤ ci+1, so d(c, C) ≤ d(c, ci) ≤ n

m . Thus if∨
0≤k≤m,i6=j

|φck(i)+ck(j)(xi, xj)− ck(i)| = 0

at a particular (a1, . . . , an), we find that d(tp(a1, . . . , an), C) ≤ n
m and if

inf
x1,...,xn

∨
0≤k≤m,i6=j

|φck(i)+ck(j)(xi, xj)− ck(i)| = 0

for (c0, . . . , cm) for all m, the type with image C is realized. As {c0, . . . , cm} could be any chain
from 0 to 1, and in fact this predicate will still be 0 for any finite chain, we simply require this for
all finite chains. �

We now consider distal cell decompositions in this language.

Definition 4.20. If φ(x; y) is a definable predicate, and Ψ is a finite set of definable predicates
of the form ψ(x; y1, . . . , yk), then Ψ weakly defines a ε-distal cell decomposition over M for φ(x; y)
when for every finite B ⊆My with |B| ≥ 2 and every a ∈Mx, there are ψ ∈ Ψ and b1, . . . , bk ∈Mx

such that ψ(a; b1, . . . , bk) > 0 and for all a′ ∈Mx, ψ(a′; b1, . . . , bk) > 0 implies |φ(a; b)−φ(a′; b)| ≤ ε
for all b ∈ B.

Theorem 4.21. Each φα(x; y) admits a ε-distal cell decomposition over M[0,1] for each ε > 0, which
we construct explicitly.

Proof. Let B ⊆M[0,1] be finite with |B| ≥ 2.

For each 0 ≤ i ≤ n, let Fi− be a continuous function with support
[
0, in

)
, and let Fi+ be a

continuous function with support
(
i
n , 1
]
. We will show for each 0 < i < n, there are there are some

ψi−(x), ψi+(x), with ψi−(x) of the form either 1 or Fi−(φα(x; b−)), and ψi+(x) either of the form 1
or Fi+(φα(x; b+)) with b−, b+ ∈ B, such that ψi±(a) > 0, while ψi−(a′) > 0 implies φα(a′; b) < i

n

for each b ∈ B with φα(a′; b) < i
n , and ψi+(a′) > 0 implies φα(a′; b) > i

n for each b ∈ B with

φα(a′; b) > i
n . Once we know this, we can let ψ(x) =

∧n
i=0 (ψi−(x) ∧ ψi+(x)). Then ψ(x) will be

of the form ψ(x; b1, . . . , bk), where ψ is one of a finite set Ψ of formulas, and b1, . . . , bk. This set
Ψ weakly defines a 2

n -distal cell decomposition, because ψ(a) > 0, and for every b ∈ B, there is

some i such that i
n < φα(a; b) < i+2

n , so ψ(a′; b1, . . . , bk) > 0 implies i
n < φα(a′; b) < i+2

n , and thus

|φα(a; b)− φα(a′; b)| ≤ 2
n .

By symmetry, it suffices to construct ψi−(x). Let b− ∈ B maximize sup(b−1
− ({α − i

n})) under

the constraint that φα(a; b) < i
n . If there is not some b− satisfying this constraint, then we simply

let ψi−(x) = 1, the rest of the requirements are trivial. If it does exist, then we let ψi−(a) =
Fi−(φα(a; b−)), and by construction, Fi−(φα(a; b−)) > 0.

If a′ ∈Mx, b ∈ B, we claim that φα(a′; b) < i
n if and only if the interval b−1((α− i

n , 1]) intersects

the interval a′−1([0, in )). Let tα be such that a′(tα)+b(tα) = α. If φα(a′; b) < i
n , then these intervals

intersect at tα. If these intervals intersect at some t, then we know that a′(t) < i
n and b(t) > α− i

n .

If a′(t) + b(t) < α, then t < tα, and thus b(tα) ≥ b(t) > α − i
n , so φα(a′; b) < i

n , and similarly if

a′(t)+b(t) > α, then t > tα, so φα(a′; b) = a′(tα) < i
n . If a′(t)+b(t) = α, then φα(a′; b) = a′(t) < i

n .
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Now assume ψi−(a′) > 0, φα(a; b) < i
n , - we wish to show that φα(a′; b) < i

n . Because ψi−(a′) > 0,

we see that b−1
− ((α− i

n , 1]) intersects a′−1([0, in )), and by the definition of b−, because φα(a; b) < i
n ,

we know that b−1
− ((α − i

n , 1]) ⊆ b−1((α − i
n , 1]). Thus b−1((α − i

n , 1]) intersects a′−1([0, in )) and

φα(a′; b) < i
n . �

4.3. Nondiscreteness. Dual linear continua provide the best example of distal metric structures
that are truly different from distal discrete structures. There are several possible criteria for deter-
mining whether a metric structure is non-discrete, and [15] compares several of these. Of these, the
strongest, there denoted as ?, is defined as follows:

Definition 4.22. A metric structure has the property ? when for any small partial type Σ(x) (in
finitely many variables), the metric space of realizations of Σ(x) in the monster has a bounded
number of connected components.

Theorem 4.23. Dual linear continua have property ?.

Proof. By Theorem 4.11, the monster model is isomorphic to ML for some linear continuum with
endpoints L - we shall assume that it is indeed ML. By [15, Theorem 3.1], to check ? it suffices to
check that the space of realizations of complete types over small models are connected. Thus let
M �ML be a small model and let p(x1, . . . , xn) be a complete M -type. There are unique functions
h1, . . . , hn : [0, 1]→ [0, 1] such that for any realization (f1, . . . , fn) of p, with f = 1

n

∑n
i=1 fi, we have

fi = hi ◦f . There is also a unique complete M -type q(x) of averages of realizations of p. We see that
f 7→ (h1, . . . , hn) ◦ f is a function from the space of realizations of q to the space of realizations of p,
and is continuous with respect to the sup metric, so it suffices to show that the space of realizations
of q, in one variable, is connected. In fact, we will show that it is convex, and thus path-connected.

Suppose f, g ∈ML are both realizations of q. It suffices to show that for λ ∈ [0, 1], tp((1− λ)f +
λg/M) = q. In fact, by Lemma 4.12, it suffices to check that for each a ∈ M , tp((1− λ)f + λg, a),
or equivalently im((1− λ)f + λg, a), does not depend on λ. For each c ∈ [0, 1], both f and g obtain
the same closed interval of values on the preimage a−1({c}). Thus for any t ∈ a−1({c}), we have
that (1 − λ)f(t) + λg(t) is also in this interval, so ((1 − λ)f(t) + λg(t), a(t)) ∈ im((f, a)), implying
that im((1− λ)f + λg, a) = im((f, a)) for all λ. �

5. Nonexamples

In discrete logic, there is an open question as to which NIP structures admit distal expansions.
The Strong Erdős-Hajnal property is one requirement for admitting a distal expansion, and we have
shown that this is still required in continuous logic, but little else is known. In continuous logic,
however, we can see a wide class of NIP structures which cannot admit distal expansions for a
seemingly different reason: Banach structures. We thank James Hanson for pointing this out.

Definition 5.1. A Banach structure is an expansion of a Banach space, viewed as a metric structure.
The theory of a Banach structure is called a Banach theory.

It will be easy to see that many of these are not distal, because of the following fact:

Fact 5.2 ([16, Corollary 6.10]). Every Banach theory with infinite dimensional models has an infinite
indiscernible set in some model.

Corollary 5.3. No Banach theory with infinite dimensional models is distal.

Proof. This is true because no distal structure has an infinite indiscernible set, by the same proof
as in discrete logic:

If it did, we could partition such a set into two infinite subsets I, J and an extra element, d.
Then by the indiscernibilty of the overall set, I + J is indiscernible over d, and thus by distality,
I+d+J is indiscernible over d, implying that every element of I+d+J satisfies x = d. This clearly
contradicts the set being infinite. �
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One particularly interesting class of Banach structures is randomizations. If T is a metric theory,
then the randomization theory TR of T can be constructed in a few ways, each of which captures
the idea that a model of TR consists of random variables valued in models of T . The construction
in [6] adds to the sorts of T an extra sort, consisting of an algebra of random variables, which is an
L1-space, and thus is a Banach structure. While the randomization of a stable theory is stable ([6,
Theorem 4.9]) and the randomization of an NIP theory is NIP ([4, Theorem 5.3]), we see that the
same is not true of distality, as the randomization of any structure is not distal. Restricting to the
original sorts of T will not change this, as the random variable sort is interpretable from the induced
structure on the other sorts.
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