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Abstract. We realize the Fq-algebra M(Fq) studied by von Neumann and

Halperin as the Fräıssé limit of the class of finite-dimensional matrix algebras
over a finite field Fq equipped with the rank metric. We then provide a new

Fräıssé-theoretic proof of uniqueness of such an object. Using the results of
Carderi and Thom, we show that the automorphism group of Aut(Fq) is ex-

tremely amenable. We deduce a Ramsey-theoretic property for the class of

algebras M(Fq), and provide an explicit bound for the quantities involved.

1. Introduction

Fix q, a prime power. Let K(Fq) = {Mn(Fq) : n ∈ N}. If m|n, then let ιn,m be
the embedding of Mm(Fq) into Mn(Fq), given by ιn,m(x) = x⊗ 1n/m. If n0, n1, . . .
satisfies nk|nk+1 and limk→∞ nk = ∞, then we call n0, n1, . . . a factor sequence,
and

Mn0
(Fq)

ιn1,n0
↪→ Mn1

(Fq)
ιn2,n1
↪→ . . .

is an inductive sequence of Fq-algebras, so it has a direct limit, which we call
M0(Fq). Let ιnk

be the corresponding inclusion of Mnk
(Fq) into M0(Fq). On each

Mn(Fq), we can define a metric, d(x, y) = rank(x−y)
n . Under these metrics, each

inclusion ιn,m is an isometry, so a metric is induced on M0(Fq). Let M(Fq) be
the completion of M0(Fq) under this metric, which is also an Fq-algebra. In a
manuscript eventually reworked and published by his student Halperin [9], von
Neumann showed that M(Fq) is uniquely defined, that is, it does not depend on
the choice of factor sequence.

In classical model theory, a Fräıssé class K is a collection of finitely-generated
structures (or isomorphism classes thereof) in a given language, satisfying a few
additional properties, which guarantee the existence and uniqueness of a Fräıssé
limit associated with the class. The Fräıssé limit is a countably-generated structure
F such that for any structure A ∈ K, any isomorphism between substructures
A,B ∈ K of F can be extended to an automorphism of F , a property known as
K-homogeneity [10]. This theory carries over to model theory of metric structures,
where the limit need only be approximately K-homogeneous [3]. In Section 2, we
show that in the language of Fq-algebras with a metric, the class K(Fq) is a Fräıssé
class, and in Section 4, we show that M(Fq) is its Fräıssé limit. We also use give a
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direct Fräıssé-theoretic proof of the uniqueness of M(Fq), originally established by
von Neumann with a different argument.

Because of the added structure of the rank metric, there only exists an embed-
ding from Mm(Fq) into Mn(Fq) if m divides n. However, in Sections 4 and 5, we
wish to approximate embeddings from Mm(Fq) into M(Fq) by embeddings from
Mm(Fq) into some finite stage of the direct limit defining M(Fq), say, Mnk

(Fq) for
some k. To do this, unless some nk is a multiple of m, we must instead approximate
the embedding with approximate embeddings. In Section 3 we consider a natural
notion of approximate embedding, and show that any embedding into M(Fq) can be
approximated arbitrarily well by these approximate embeddings into finite stages
of the limit. In order to establish this fact, we consider a presentation of Mn(Fq)
in terms of generators and relations studied by Kassabov in [11], and prove that
the defining relations are stable with respect to the rank metric. Stability problems
for relations in metric groups and operator algebras have been estensively studied,
also due to their connections with notions such as (linear) soficity and hyperlinear-
ity in group theory, and (weak) semiprojectivity and R-embeddability in operator
algebras.

The Kechris-Pestov-Todorcevic correspondence establishes an equivalence be-
tween a Ramsey property of a Fräıssé class and extreme amenability of the auto-
morphism group of its Fräıssé limit. The Ramsey property is a generalization of the
Ramsey theorem, reducing to the standard Ramsey theorem for the Fräıssé class of
finite linear orderings. Extreme amenability pertains to the topological dynamics
of the group: a topological group G is extremely amenable when any continuous
action of G on a compact Hausdorff space X leaves some point fixed [12]. This too
carries over to metric Fräıssé structures, but again, the Ramsey property is only
approximate [14]. In Section 5, we reduce the extreme amenability of Aut(M(Fq))
to the extreme amenability of the unit group of M(Fq), proven by Carderi and
Thom [4].

It seems worth mentioning that the study of natural limiting objects of finite-
dimensional matrix algebras has also connections with computer science and applied
graph theory. In [13], the authors study Kronecker graphs, which are constructed
by taking repeated tensor products of the adjacency matrices of graphs. By taking
the tensor product sufficiently many times, one can construct a graph which is
approximately self-similar, a process suitable for modelling fractal structures which
appear in nature, or graphs such as social networks. However, in order to create
a graph which would have genuine fractal structure, one would need to take the
tensor product of an infinite sequence of matrices, which would no longer be a
well-defined matrix. Such an object does however exist, as the limit of a Cauchy
sequence of partial products, in the algebra M(Fq), so it may be possible to gain
new insight into fractal graphs by studying this algebra further.

2. K(Fq) is a Fräıssé class

Definition 2.1. Let K be a class of finitely-generated metric structures in a partic-
ular language. K is a metric Fräıssé class [6] if and only if the following properties
are satisfied:

• Joint Embedding Property (JEP): For any A,B ∈ K, there exists some
C ∈ K such that A and B both embed into C.
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• Near Amalgamation Property (NAP): For any A,B0, B1 ∈ K, embeddings
φi : A ↪→ Bi, and ε > 0, there exists some C ∈ K with embeddings
ψi : Bi ↪→ C such that d(ψ0 ◦ φ0, ψ1 ◦ φ1) < ε.
• Weak Polish Property (WPP): For any class satisfying JEP and NAP, we

can define, for each n ∈ N, a class Kn of structures in K, with specified
generating tuples of size at most n. We then define a pseudometric on Kn
(relying on JEP and NAP) by

dn(ā, b̄) = inf d(φ(ā), ψ(b̄))

where φ : 〈ā〉 ↪→ C,ψ : 〈b̄〉 ↪→ C are embeddings into the same structure
C ∈ K. The WPP is true when each of these pseudometrics dn is separable.

We will now verify that K(Fq) satisfies each of these properties, and is thus a
Fräıssé class, implying the existence of a unique Fräıssé limit.
Joint Embedding Property. If m|n, then let ιn,m be the embedding of Mm(Fq) into
Mn(Fq), given by ιn,m(x) = x⊗ 1n/m [5].

Let A and B be structures in K(Fq), that is, A = Ma(Fq) and B = Mb(Fq).
Then if C = Mab(Fq), there exists an embedding ιab,a : A ↪→ C, and an embedding
ιab,b : B ↪→ C, so A and B can be jointly embedded into C.
Amalgamation Property. In this case, K(Fq) satisfies not only the Near Amalgama-
tion Property, but the same amalgamation property as discrete structures, allowing
us to dispense with the ε: for any A,B0, B1 ∈ K, embeddings φi : A ↪→ Bi, there
exists some C ∈ K with embeddings ψi : Bi ↪→ C such that ψ0 ◦ φ0 = ψ1 ◦ φ1.

Let A,B0, B1 be structures in K(Fq), with embeddings φi : A → Bi. Let A =
Ma(Fq) and Bi = Mbi(Fq). As A,Bi are matrix algebras over Fq, and thus finite-
dimensional central simple algebras over Fq, the Skolem-Noether Theorem [7] shows
that each embedding φi : A ↪→ Bi must be a composition of ιbi,a with an inner
automorphism of Bi, given by conjugating by some unit yi ∈ B∗i . Thus we may
assume without loss of generality that each φi = ιbi,a.

Thus if C = Mc(Fq), where b0, b1 both divide c, we can use the automorphisms
ιc,bi to make the following diagram commute:

Mc(Fq)

Mb0(Fq)

ιc,b0

99

Mb1(Fq)

ιc,b1

ee

Ma(Fq)
ιb0,a

ee

ιb1,a

99

This commutes because for any i, j, k,

ιijk,ij ◦ ιij,i(x) = ιij,i(x)⊗ 1k = x⊗ 1j ⊗ 1k = x⊗ 1jk = ιijk,i(x)

and thus ιb0b1,bi ◦ ιbi,a = ιb0b1,a for each i.
Weak Polish Property. There are only countably many structures in K(Fq), and
each one is finite. Thus each K(Fq)n is countable, and thus trivially separable.

3. Stability Lemma

3.1. δ-embeddings.
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Definition 3.1. Define a (not necessarily unital) homomorphism φ : Mm(Fq) →
Mn(Fq) to be a δ-embedding when there exists some unit y ∈ Mn(Fq) and some

number k such that for each x ∈ Mm(Fq), φ(x) = y(x⊕k ⊕ 0n−mk)y−1, and mk
n ≥

1− δ.
δ-embeddings will be used as a proxy for actual embeddings, because we cannot

always guarantee that there will be an embedding Mm(Fq) ↪→ Mn(Fq), unless we
know that m divides n. We can reconstruct an actual embedding by taking a limit
of δ-embeddings with δ decreasing to 0.

3.2. Proving the Lemma.

Lemma 3.1. Let M(Fq) be the completion of the direct limit of the sequence
Mn0

(Fq) ↪→ Mn1
(Fq) ↪→ . . . , and let φ : Mn(Fq) ↪→ M(Fq) be an embedding.

Then for each ε, δ > 0, there exists some N such that if K ≥ N , if nK = mn + r
with 0 ≤ r < n, then there is a r

nK
-embedding ψ : Mn(Fq) → MnK

(Fq) such that

d(ιnK
◦ ψ, φ) < ε. In particular, if n divides nK , then ψ is an embedding.

Proof. Fix ε > 0. As established in [11], for a prime p, Mn(Fp) is the ring presented
by the following generators and relations

Mn(Fp) = 〈a, b|an = bn = 0, ba+ (p+ 1)an−1bn−1 = 1〉
where a and b are the off-diagonal matrices



0 · · · · · · · · · · · · · · · · · · 0

1 0
...

0 1 0
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

...
...

. . . 1 0
...

0 · · · · · · · · · · · · 0 1 0



,



0 1 0 · · · · · · · · · · · · 0
... 0 1

. . .
...

... 0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 0 1 0
... 0 1
0 · · · · · · · · · · · · · · · · · · 0


Choose p to be the prime such that pk = q. The set of matrices in Mn(Fq) with

coordinates from Fp is an isomorphic copy of Mn(Fp), so we can find a, b ∈Mn(Fq)
that generate the embedded copy of Mn(Fp) as a ring. As the embedded copy of
Mn(Fp) contains a basis of Mn(Fq) as a Fq-vector space, a, b generate Mn(Fq) as a
Fq-algebra.

Now we look at φ(Mn(Fq)), and in particular, its generators φ(a), φ(b). We can
write φ(a) as the limit of a Cauchy sequence a1, a2, . . . and φ(b) as the limit of
a Cauchy sequence b1, b2, . . . , with each ai, bi in the direct limit of Mn0(Fq) ↪→
Mn1

(Fq) ↪→ . . . . Let δ > 0. Then as the operations +, ·, d are continuous, we can
find some ai, bj such that

d(ani , 0), d(bnj , 0), d(ai, φ(a)), d(bj , φ(b)), d(bjai + an−1
i bn−1

j , 1) < δ

and ∣∣∣∣d(ai, 0)− n− 1

n

∣∣∣∣ , ∣∣∣∣d(bj , 0)− n− 1

n

∣∣∣∣ < δ.
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Let N be such that ai, bj are both in the image ιnN
(MnN

(Fq)). Let K ≥ N and
note that ai, bj are both in the image ιnK

(MnK
(Fq)). Let x = ι−1

nK
(ai) and y =

ι−1
nK

(bj) be matrices acting on the vector space FnK
q . Then let W0 = ker y∩kerxn∩

ker(yx + xn−1yn−1 − 1). Clearly dim ker y = nK − rank(y), so
∣∣∣dim ker y

nK
− 1

n

∣∣∣ < δ,

and as each of the other operators has rank at most nKδ, each of their kernels has
dimension at least nK(1 − δ), and W0, the intersection of these three kernels, has
dimension at least nK( 1

n − 3δ).

As W0 ⊂ ker(yx+ xn−1yn−1 − 1) ∩ ker y, we know that for any v ∈W0,

(yx+ xn−1yn−1)v = yxv = v

so on the restricted domain of W0, yx = 1. Thus x maps W0 isomorphically onto
xW0 with inverse y. For any 1 ≤ k ≤ n − 1, if Wk−1 ⊂ ker(yx − 1) ∩ ker yk

has been defined, let Wk = xWk−1 ∩ ker(yx + xn−1yn−1 − 1). Then as yx is the
identity on Wk−1, x is an isomorphism from Wk−1 to xWk−1 with inverse y. Thus
y is an isomorphism from Wk to yWk ⊂ Wk−1 ⊂ ker yk, so Wk ⊂ ker yk+1. If
k < n − 1, we also have 0 = yx + xn−1yn−1 − 1 = yx − 1 on Wk, so Wk ∈
ker(yx− 1) ∩ ker yk+1, satisfying the inductive hypothesis for the next step. Thus
we can apply this recursive definition all the way through Wn−1, provided the base
case works. As W0 ⊂ ker(yx−1)∩ker y1, the base case checks out, and this recursive
definition is well-defined.

Also, as dimxWk−1 = dimWk−1 and yx+ xn−1yn−1 − 1 has rank at most nKδ,

dimWk ≥ dimxWk−1 − nKδ = dimWk−1 − nKδ.

As dimW0 ≥ nK( 1
n − 4δ), we have that dimWk ≥ nK( 1

n − (4 + k)δ) ≥ nK( 1
n −

(4 + n)δ). Now we define V = Wn−1 + yWn−1 + · · · + yn−1Wn−1, and we wish
to prove that V ⊂ kerxn ∩ ker yn ∩ ker(yx + xn−1yn−1 − 1). For any 0 ≤ k ≤
n − 1, as yn−1Wn−1 ⊂ W0 ⊂ ker y, ykWn−1 ⊂ ker yn−k, so V ⊂ ker yn. For
any 0 ≤ k ≤ n − 1, ykWn−1 ⊂ xn−k−1W0. As W0 ⊂ kerxn, we know that
ykWn−1 ⊂ xn−k−1W0 ⊂ kerxk+1 ⊂ kerxn, and V ⊂ kerxn. Thus also Wn−1 ⊂
kerx ⊂ ker yx, and as xy is the identity on Wk for any k > 0, xky = xk−1 on
Wk, which contains yk−1Wn−1, so as xy is the identity on W1, by induction, xkyk

is the identity on yn−k−1Wn−1, and xn−1yn−1 is the identity on Wn−1. Thus
yx + xn−1yn−1 = 1 on Wn−1, and Wn−1 ⊂ ker(yx + xn−1yn−1 − 1). We now
need to show that ykWn−1 ⊂ ker(yx + xn−1yn−1 − 1) for k ≥ 1. In that case,
ykWn−1 ⊂ ker yn−k ⊂ yn−1, and by assumption, ykWn−1 ⊂Wn−k−1 ⊂ ker(yx−1),
so yx+ xn−1yn−1 − 1 = yx− 1 = 0 on ykWn−1 as desired.

Thus V ⊂ kerxn ∩ ker yn ∩ ker(yx + xn−1yn−1 − 1), and the relations xn =
yn = 0 = yx + xn−1yn−1 − 1 are satisfied when restricted to the domain V . Thus
on the domain V , for some unit B ∈ MnK

(Fq) representing a change-of-basis,

x = B(a⊕
dimV

n ⊕ 0⊕nK−dimV )B−1 and y = B(b⊕
dimV

n ⊕ 0⊕nK−dimV )B−1.
Let nK = nm + r, with 0 ≤ r < n. Then as n divides dimV , dimV

n ≤ m. If we

let x′⊕m ⊕ 0⊕r)B−1 and y = B(b⊕m ⊕ 0⊕r)B−1, we see that x′⊕
dimV

n a⊕m−
dimV

n ⊕
0⊕r)B−1 and y′⊕

dimV
n b⊕m−

dimV
n ⊕ 0⊕r)B−1, so both of these clearly have rank

m− dimV

n
≤ nK − dimV

n

Thus if we define the homomorphism ψ on the generators by ψ(a) = x′ and ψ(b) =
y′, we find that ψ is a r

nK
-embedding, and it suffices to show that d(ιnK

◦ψ, φ) < ε.
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To do this, it suffices to show that d(ιnK
◦ ψ(a), φ(a)), d(ιnK

◦ ψ(b), φ(b)) < γ for
some γ < 0 depending on ε. As

d(ιnK
◦ ψ(a), φ(a)) = d(ιnK

(x′), φ(a)) ≤ d(x, x′) + d(ιnK
(x), φ(a)) ≤ d(x, x′) + δ,

and similarly d(ιnK
◦ ψ(b), φ(b)) ≤ d(y, y′) + δ, we recall that d(x, x′), d(y, y′) ≤

nK−dimV
n , so we only need to show that nK−dimV

n + δ < γ for sufficiently small δ.
For 0 ≤ r < s ≤ n, we will show that yrWn−1 ∩ ysWn−1 = 0. As yrWn−1 ⊂

kerxr+1 and ysWn−1 ⊂ ker yn−s, if v ∈ yrWn−1∩ysWn−1, then v ∈ kerxr+1∩yn−s.
As 〈x, y〉 ∼= Mn(Fq) when restricted to the domain V , xsys + yn−sxn−s = 1 on V ,
so v = (ysxs + xn−syn−s)v = 0. Thus yrWn−1 ∩ ysWn−1 = 0, and

dimV =

n−1∑
s=0

dim ysWn−1 = n dimWn−1 ≥ nK(1− (4 + n)nδ)

Placing this in our earlier inequality, we find that

d(x, x′), d(y, y′) <
nK − dimV

nK
≤ (4 + n)nδ

so by taking δ low enough, we find

d(x, x′) + δ, d(y, y′2 + 4n+ 1)δ < γ

as desired. �

4. Explicit Fräıssé Theory

As K(Fq) is a Fräıssé class, it must have a unique Fräıssé limit. A Fräıssé
limit of K(Fq) is a K(Fq)-structure which is K(Fq)-universal and approximately
homogeneous [6]. A K(Fq)-structure is a structure which can be realized as the
direct limit (in the category of metric structures with the appropriate signature)
of a sequence of elements of K(Fq), which is, in this case, the completion of the
algebraic direct limit of an inductive sequence of elements of K(Fq), or M(Fq) for
some factor sequence. Given von Neumann’s result, it is clear that there is only one
K(Fq)-structure up to isomorphism, so this must be the Fräıssé limit. If we do not
assume this result, we can still use the uniqueness of the Fräıssé limit to directly
prove the uniqueness of M(Fq).

First we will show that if the factor sequence n0|n1| . . . is given by ni = i!,
then the completion M(Fq) of the corresponding direct limit is a Fräıssé limit.
Then we will show, with a back-and-forth argument mirroring the classic proof
of the uniqueness of the Fräıssé limit, that all K(Fq)-structures are isomorphic to
M(Fq).[10]

The factor sequence 0!, 1!, 2!, . . . is chosen to make K-universality simple to prove.
For any i, we know an embedding of Mi(Fq) into Mi!(Fq), as i divides i!. Thus
Mi(Fq) embeds into Mni(Fq), and thus into M(Fq).

4.1. Approximate Homogeneity. Fix a factor sequence n0|n1| . . . . We will show
that the completion of its direct limit, M(Fq), is the Fräıssé limit of all Mn(Fq)s.
Let φ, ψ : Mn(Fq) ↪→M(Fq) be embeddings. Fix ε > 0. Then we apply Lemma 3.1
to both φ, ψ, letting Nφ be the value of N that suffices for φ, and Nψ the value of N
that suffices for ψ. Then let K = maxNφ, Nψ. By the choice of Nφ and Nψ, we see
that there is a ring homomorphism φ′ : Mn(Fq) → MnK

(Fq) with d(ιnK
◦ φ′, φ) <

ε
2 , and similarly a homomorphism ψ′ close to ψ, together with units Bφ, Bψ ∈
MnK

(Fq) such that where nK = nm + r and 0 ≤ r < n, for all A ∈ Mn(Fq),
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φ′(A) = Bφ(A⊕m ⊕ 0⊕r)B−1
φ , and similarly for ψ′. Thus BψB

−1
φ φ′(A)BφB

−1
ψ =

Bψ(A⊕m ⊕ 0⊕r)B−1
ψ = ψ′(A). Thus if β is the inner automorphism given by

conjugation by BψB
−1
φ , we have ψ′ = β ◦ φ′, and for A ∈Mn(Fq),

d(β ◦ φ(A), ψ(A)) ≤ d(β ◦ φ(A), β ◦ φ′(A)) + d(ψ(A), ψ′(A))

= d(φ(A), φ′(A)) + d(ψ(A), ψ′(A))

< ε

so d(β ◦ φ, ψ) < ε.

4.2. Uniqueness. The Fräıssé limit is also unique, at least amongK(Fq)-structures,
which are direct limits of elements of K(Fq). [6] In fact, as von Neumann and
Halperin showed, there is only one K(Fq)-structure, M(Fq) (as metric structures
must be complete, the direct limit of an inductive sequence of metric Fq-algebras
is the completion of the algebraic direct limit). We shall provide an alternate proof
of this fact, following the classic proof of the uniqueness of the Fräıssé limit.

First we show the approximate extension property.

Lemma 4.1 (Approximate Extension Property). Let m0,m1, . . . be a factor se-
quence. Fix δ, δ′ > 0, and let φ : Mmk

(Fq) → Mn(Fq) be a δ-embedding. There
exists some k′ ≥ k and a δ′-embedding ψ : Mn(Fq) → Mmk′ (Fq) such that the
following diagram commutes up to δ + δ′:

Mmk′ (Fq) Mn(Fq)

Mmk
(Fq)

ψ

im
k′ ,mk

φ

Proof. As φ is a δ-embedding, we can write it as φ : a 7→ y(a⊕r ⊕ 0n−mkr)y−1

where mkr ≥ (1 − δ)n. Let ψ : b 7→ z((y−1by)⊕s ⊕ 0mk′−sn)z−1, which makes ψ

a δ′-embedding as long as mk′−sn
mk′

≤ δ′ which is satisfied when δ′mk′ > n, and

s = bmk′
n c, so mk′ − sn < n < δ′mk′ .

Then the only remaining requirement is that for all a ∈Mmk
(Fq), d(ψ◦φ(a), imk′ ,mk

(a)) >
δ + δ′.

ψ ◦ φ(a) = z((y−1y(a⊕r ⊕ 0n−mkr)y−1y)⊕s ⊕ 0mk′−sn)z−1

≤ z((a⊕r ⊕ 0n−mkr)⊕s ⊕ 0mk′−sn)z−1

so with the correct choice of z,

ψ ◦ φ(a) = a⊕rs ⊕ 0mk′−rsmk

so
d(ψ ◦ φ(a), imk′ ,mk

(a)) = 1− rsmk

mk′

and
rsmk

mk′
≥ (1− δ) sn

mk′
≥ (1− δ)(1− δ′) > 1− (δ + δ′)

so we have
d(ψ ◦ φ(a), imk′ ,mk

(a)) = 1− rsmk

mk′
< δ + δ′

as desired. �

Theorem 4.1. If X and Y are K(Fq)-structures, then X ∼= Y .



8 AARON ANDERSON

Proof. LetX be the completion of a direct limit corresponding to the from the factor
sequence m0,m1, . . . , and let Y be the completion of the direct limit corresponding
to the factor sequence n0, n1, . . . . Let φ0 : Mm0(Fq)→Mn0(Fq) be a 1-embedding,
so in1,n0

◦φ0 is a 1-embedding as well. Thus by Lemma 4.1, there is some Mmj1
(Fq)

and a 2−1-embedding ψ0 : Mn0
(Fq)→Mmj1

such that d(ψ0 ◦ in1,n0
◦φ0, imj1

,m0
) <

1+2−1. We define j0 = k0 = 0, and given ji or ki, define Xi = Mmji
and Yi = Mnki

.

Now we continue this process recursively. Let φi : X2i → Y2i is a 2−2i-embedding.
We define k2i+1 = k2i + 1, so that the sequence Y0, Y1, . . . does not terminate. By
Lemma 4.1, there is a X2i+1 and a 2−(2i+1)-embedding ψi : Y2i+1 → X2i+1 such
that d(ψi ◦ ιnk2i+1

,nk2i
◦φi, ιmj2i+1

,mj2i
) < 2−2i + 2−(2i+1). This just generalizes the

case of i = 0.
Similarly, let ψi : Y2i+1 → X2i+1 be a 2−(2i+1)-embedding. Then we define

j2i+2 = j2i+1 + 1, so that the sequence X0, X1, . . . does not terminate either. By
Lemma 4.1, there is a Y2i+2 and a 2−(2i+2)-embedding φi+1 : X2i+2 → Y2i+2 such
that d(φi+1 ◦ ψi, id) < 2−(2i+1) + 2−(2i+2).

We will show that d(φn(x), φn+1(x)) < 2−n+2.

d(φn(x), φn+1(x))

≤ d(φn(x), φn+1 ◦ ψn ◦ φn(x)) + d(φn+1 ◦ ψn ◦ φn(x), φn+1(x))

≤ d(φn(x), φn+1 ◦ ψn ◦ φn(x)) + d(ψn ◦ φn(x), x)

< (2−2n + 2−2n−1) + (2−2n−2 + 2−2n−3) < 2−2n+1

and thus if n < m, d(φm(x), φn(x)) <
∑m−1
k=n 2−2k+1 < 2−2n+2, and φn(x), φn+1(x), . . .

is a Cauchy Sequence, and by the same proof so is ψn(y), . . . . Now we define
φ = limi φi and ψ = limi ψi pointwise on

⋃
iXi and

⋃
i Yi respectively. Then

for any i and x ∈ X2i, d(ψi ◦ φi(x), x) < 2−2i + 2−2i−1. Thus if x ∈ X2i,
limj→∞ d(ψj ◦ φj(x), x) = 0.

For any δ-embedding θ : A→ B, d(θ(1A), 1B) < δ, so φ(1) = limi φi(1) = 1, and
by the same reasoning, ψ is also unital.

Now we show that ψ, φ are 1-Lipschitz. Fix ε > 0, and let x1, x2 ∈
⋃
iXi be such

that d(x1, x2) < ε. Let j be such that x1, x2 ∈ X2n. Then if r(x) is the normalized
rank of x, we have for any x ∈ X2n, r(φn(x)) ≤ r(x) because φj is a δ-embedding
for some δ, and thus d(φn(x1), φn(x2)) ≤ d(x1, x2) < ε, so φ is 1-Lipschitz on

⋃
iXi,

which is dense in X, so it is possible to extend φ to the entirety of X as a 1-Lipschitz
and thus continuous map. Similarly, ψ is 1-Lipschitz, and can be extended to all of
Y .

Fix x1, x2 ∈
⋃
iXi, and any δ > 0, there is some N such that if n > N , φn is a

δ-embedding. Thus also d(φn(x1), φn(x2)) ≥ (1− δ)d(x1, x2), so d(φ(x1), φ(x2)) =
d(x1, x2), and φ (and similarly ψ) is an isometry.

We now wish to show that ψ ◦ φ is the identity on X, and the same proof will
show that φ◦ψ is the identity on Y . We note that for any n < m, as proven earlier,
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d(φm(x), φn(x)) < 2−n+2, and d(ψm(y), ψn(y)) < 2−2n+1. Thus for any n,

d(ψ◦φ(x), x)

≤ d(ψ ◦ φ(x), ψ ◦ φn(x)) + d(ψ ◦ φn(x), ψn ◦ φn(x)) + d(ψn ◦ φn(x), x)

< d(φ(x), φn(x)) + d(ψ ◦ φn(x), ψn ◦ φn(x)) + (2−2n + 2−2n−1)

< 2−2n+2 + 2−2n+1 + 2−2n + 2−2n−1

< 2−2n+3

and therefore d(ψ ◦ φ(x), x) = 0, as desired.
As ψ and φ are inverses, and each is a unital isometric homomorphism, they are

isomorphisms, and X ∼= Y . �

5. Extreme Amenability

5.1. The set of inner automorphisms is dense in Aut(M(Fq)). In order to
show that the inner automorphisms are dense in Aut(M(Fq)), it suffices to choose
an automorphism φ ∈ Aut(M(Fq)), and a basis open neighborhood around it, and
find an inner automorphism in that neighborhood. Fix a factor sequence n0, n1, . . . ,
and let M0(Fq) be the direct limit associated to it, dense in M(Fq). Now let U be
a basis neighborhood around φ, which will be of the form

⋂
x∈X{f ∈ Aut(M(Fq)) :

d(f(x), φ(x)) < ε} for some finite set X = {x1, . . . , xk}.
For each xi ∈ X, let yi ∈M0(Fq) be such that d(xi, yi) <

ε
3 . Then we shall find

an inner automorphism ψ such that d(ψ(yi), φ(yi)) <
ε
3 for each yi. Given such an

automorphism, we find

d(ψ(xi), φ(xi)) < d(ψ(xi), ψ(yi)) + d(ψ(yi), φ(yi)) + d(φ(yi), φ(xi))

< 2d(xi, yi) +
ε

3
< ε

so ψ ∈ U . Thus it suffices to find an inner automorphism ψ such that d(ψ(y), φ(y)) <
ε for each y ∈ Y , for each finite set Y ⊂M0(Fq) and each ε > 0.

Let us fix some such Y ⊂M0(Fq) and ε > 0. As Y is finite, there must be some
nm such that Y is contained in the image ιnm(Mnm(Fq)).

Define φ′ : Mnm(Fq) ↪→M(Fq) by φ′ = φ ◦ ιnm . Clearly φ′ is an embedding. By
Lemma 3.1, there exists some nK , and an embedding ψ : Mnm

(Fq) ↪→ MnK
(Fq)

such that d(ιnK
◦ ψ(x), φ′(x)) < ε for each x ∈ Mnm

(Fq), so for each y ∈ Y , as
Y ⊂Mnm

(Fq), d(ιnK
◦ ψ(y), φ′(y)) < ε.

5.2. Quotient. Let A(p) be as in the paper by Carderi and Thom.[4] They as-
sert that A(p) is the group of units of M(Fq), which obviously has a continuous
surjective homomorphism onto the inner automorphism group B(p) of units of
M(Fq). As B(p), the image of A(p) under a continuous homomorphism, is dense
in Aut(M(Fq)), we have, with Proposition 6.2 of [8], that Aut(M(Fq)) is itself ex-
tremely amenable, and by the KPT correspondence, the class of matrix algebras
has the Ramsey Property.

6. Ramsey Property

Theorem 6.1. The Fräıssé class K(Fq) has the approximate Ramsey Property.
That is, if A,B ∈ K(Fq), and ε > 0, there exists some C ∈ K(Fq) such that for any
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continuous coloring γ of
(
C
A

)
, that is, a 1-Lipschitz map γ :

(
C
A

)
→ [0, 1], there is

some B′ ∈
(
C
B

)
such that the oscillation of γ over the subset

(
B′

A

)
⊂
(
C
A

)
is at most

ε.

Proof. Let A,B ∈ K(Fq) be such that A ≤ B, that is, A = Ma(Fq), B = Mb(Fq),
where a divides b. Let k =

∣∣∣(BA)∣∣∣. Fix ε.

Let c > 64ε−2 max{log(2k), log(6dε−1e)} be a multiple of b, and C = Mc(Fq).
Now let γ be a continuous coloring of

(
C
A

)
. We seek to find some B′ ≤ C with

B ∼= B′ such that the oscillation of γ on
(
B′

A

)
is at most ε.

Let
(
B
A

)
= {A1, . . . , Ak}. For each Aj ∈

(
B
A

)
, there exists some inner automor-

phism φj of B such that φj(A) = fjAf
−1
j = Aj , with fj a unit of B, which can be

taken to have determinant 1, so that fj ∈ SLb(Fq). Let F = {fj⊗1c/b : 1 ≤ j ≤ k},
so that F ⊂ SLc(Fq). Now we define a coloring γ′ of SLc(Fq), given by γ′−1).

Now let m =
⌈

3
ε

⌉
, and define U to be an open cover {Ui : 1 ≤ i ≤ m} of SLc(Fq),

such that every ε
3 -ball in SLc(Fq) is contained in some Ui. Specifically, let us let

Vi =
(
i−2

3 ε, i+1
3 ε
)
, observing that {Vi : 1 ≤ i ≤ m} is an open cover for [0, 1]. We

note that the ε
3 -ball around any point in [0, 1] is contained in some Vi. Then let

Ui = γ′−1(Vi). As γ′ is 1-Lipschitz, if x ∈ SLc(Fq), and B(x) is the ε
3 -ball around

it, then for any y ∈ B(x), d(γ′(y), γ′(x)) ≤ d(y, x) < ε, so γ′(B(x)) is contained in
B(γ′(x)), which is contained in turn by Vi for some i, so B(x) ⊂ γ′−1(Vi) = Ui.

Theorem 2.8 of Carderi and Thom’s paper[4] states that there exists some
g ∈ SLc(Fq) such that gF ⊂ Ui for some 1 ≤ i ≤ m, as long as we take
c > 64ε−2 max{log(2k), log(2m)}, which is satisfied by our choice

c > 64ε−2 max{log(2k), log(6dε−1e)}

Thus for each fj ∈ F , γ′(gfj) ∈ Vi, so γ(gfjAf
−1
j g−1) ∈ Vi. As fjAf

−1
j ⊂ B,

we have gfjAf
−1
j g−1 ⊂ gBg−1, and thus gfjAf

−1
j g−1 ∈

(
gBg−1

A

)
. Thus if S =

{gfjAf−1
j g−1 : 1 ≤ j ≤ k}, then S ⊂

(
gBg−1

A

)
, and γ(S) ∈ Vi, so the oscillation of

γ on S is at most the diameter of Vi, which is ε. Let 1 ≤ j, ` ≤ k. If gfjAf
−1
j g−1 =

gf`Af
−1
` g−1, then fjAf

−1
j = f`Af

−1
` , so j = `. Thus each gfjAf

−1
j g−1 is distinct,

and
∣∣{gfjAf−1

j g−1 : 1 ≤ j ≤ k}
∣∣ = k =

∣∣∣(gBg−1

A

)∣∣∣, so {gfjAf−1
j g−1 : 1 ≤ j ≤ k} =(

gBg−1

A

)
, and

(
gBg−1

A

)
has oscillation at most ε under γ, so we can let B′−1. �

Now to make precise our bound of 64ε−2 max{log(2k), log(6dε−1e)}, we must

bound k. If A′ ∈
(
B
A

)
, and φ ∈ Aut(B), then φ(A′) will still be an embedded

copy of A, and it is easy to see that φ : A′ 7→ φ(A′) defines a group action of

Aut(B) on
(
B
A

)
. For any A′ ∈

(
B
A

)
, by the Skolem-Noether theorem there is some

automorphism φ ∈ Aut(B) such that φ(A ⊗ 1) = A′, so this action is transitive,

and thus k =
∣∣∣(BA)∣∣∣ = |Aut(B)|

|Stab(A⊗1)| ≤ |Aut(B)|. Thus we calculate Aut(B).

Theorem 6.2. Aut(Mn(Fq)) ∼= SLn(Fq)

Proof. Define a map φ : GLn(Fq) → Aut(Mn(Fq)) given by φ(g) : x 7→ gxg−1.
Not only is this a group homomorphism, but it is onto, as the Skolem-Noether
theorem guarantees that all automorphisms of Mn(Fq) are inner. Thus it suffices
to determine the kernel of the map. kerφ is exactly the center of GLn(Fq), which is



THE FRAÏSSÉ LIMIT OF MATRIX ALGEBRAS WITH THE RANK METRIC 11

just the scalar multiples of the identity. Thus Aut(Mn(Fq)) ∼= GLn(Fq)/GL1(Fq) ∼=
SLn(Fq). �

As |SLn(Fq)| = 1
q−1

∏n−1
i=0 (qn − qi)[1], k ≤ qb

2

, so our Ramsey bound can be
written as

64ε−2(log(2) + max(b2 log(q), log(6dε−1e))
which is remarkably only quadratically dependent in b, and only slightly worse than
quadratic in ε−1.
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