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Motivation

@ In the 1930s, von Neumann developed a version of projective
geometry where (normalized) dimensions of subspaces can
take any real value in [0, 1]

@ Subspaces in projective geometry correspond to ideals of
matrix rings, rank gives dimension

@ For continuous geometry, we need matrices with rank € [0, 1]
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Basic Construction

o Fix finite field IF.

e Given m,n € N, m|n, define an embedding
Gnm : Mm(Fq) = Mp(Fy), where ¢ppm(X) = X ® l,,/m

rank(A—B)
—y

@ Put a metric on each M,(Fg), by letting d(A, B) =

@ ¢nm respects the metric, so it is an embedding of metric rings.
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Basic Construction

Definition

Let ng, n1,--- € N be a factor sequence when n;|n;+1 and
Iim,-_mo n; = 0.

e For any factor sequence ng, n1,..., we get an inductive
sequence

d)n]_ nO ¢n2n1 ¢n3 n2
<

M (Fq) = Mp (Fq) <= Mp,(Fq)

@ Let the direct limit of this sequence (as rings) be My(Fy).
This inherits a metric.
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Theorem (von Neumann, Halperin)

If M(Fg) is the metric completion of My(Fg), then the definition
of M(F,) does not depend on the factor sequence used.

Heavily uses the theory of von Neumann regular rings. Somewhat
arcane, not too informative.[2] O
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Fraissé Classes

Definition

A Fraissé Class is a countable class of finitely-generated structures
in the same language satisfying the Joint Embedding Property and
the Amalgamation Property.

C D
A P
L//// \\5 L/// \\5
A B B C
A
JEP AP
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Basic Examples of Fraissé Classes

@ Finite linear orderings

o Finite graphs
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Fraissé Limits

Each Fraissé class K has a unique Fraissé limit, a
countably-generated structure into which every element of K
embeds, which is also IC-homogeneous.

Definition
A structure F is K-homogeneous if for every A € I, every
embedding ¢ : A < F extends to an automorphism v : F = F.
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Basic Examples of Fraissé Limits

Class ‘ Limit
Finite linear orderings Q
Finite graphs The random graph
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Metric Fraissé Theory

@ In the case of metric structures, we require that each
structure be a complete metric space

@ AP can be replaced with Near AP, where diagram commutes
up to e

@ Homogeneity also up to ¢
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Reproof of von Neumann/Halperin

Given any factor sequence, the resulting M(FFq) is a metric Fraissé
limit of K = {Mp(Fq) : n € N}. Thus M(Fg) is unique.
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Extreme Amenability

Definition

A group G is extremely amenable if any action ¢ : G ~ X on a
compact Hausdorff space X has a fixed point
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Ramsey Property

Definition

Let (ﬁ) be the set of embedded copies of A in B. Then a class K
has the Ramsey Property when for any A < B € I, and any
k € N, there is some C € K such that any k-coloring of (g) has a

monochromatic (5\,), with B’ = B.

@ For linear orders, this is equivalent to Ramsey's Theorem.

@ This is replaced with an approximate version in the metric case
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Kechris Pestov Todorcevic Correspondence

A Fraissé class IC has the Ramsey Property if and only if the
automorphism group of its Fraissé limit is extremely amenable.[3]

Aaron Anderson The Fraissé Limit of Matrix Algebras with the Rank Metric



Background
Kechris-Pestov-Todorcevic Correspondence M(Fq)

Carderi and Thom

The unit group of M(FFy) is extremely amenable. A corresponding
lemma, reminiscent of the Ramsey Property, holds for the set

{SLn(Fq) : n}[1]
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M(F,)

Aut(M(Fq)) is extremely amenable, and the Ramsey Property
holds for IC.

If A= M,(Fy), B = Mp(Fy), C = M(Fq), then we only need
¢ > 64c2(log(2) 4+ max(b? log(q), log(6[ 7))

1

where €7+ is analogous to number of colors.
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