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Abstract

We consider the relationship between learnability of a “base class” of functions on a set X,
and learnability of a class of statistical functions derived from the base class. For example,
we refine results showing that learnability of a family hp : p ∈ Y of functions implies
learnability of the family of functions hµ = λp : Y.Eµ(hp), where Eµ is the expectation
with respect to µ, and µ ranges over probability distributions on X. We will look at both
Probably Approximately Correct (PAC) learning, where example inputs and outputs are
chosen at random, and online learning, where the examples are chosen adversarily. For
agnostic learning, we establish improved bounds on the sample complexity of learning for
statistical classes, stated in terms of combinatorial dimensions of the base class. We connect
these problems to techniques introduced in model theory for “randomizing a structure”. We
also provide counterexamples for realizable learning, in both the PAC and online settings.

1 Introduction

Much of classical learning theory deals with learning a function into the reals based on
training examples consisting of input-output pairs. In the special case where the output
space is {0, 1} we refer to a concept class. There are many variations of the set-up. Training
examples can be random – as in “Probably Approximately Correct” (PAC) learning – or
they can be adversarial, as in “online learning”. We may assume that the examples match
one of the hypothesis functions (the realizable case), or not (the agnostic case).

Here we will consider learning statistical objects, where the function we are learning
is itself a distribution, and we are given not individual examples about it, but statistical
information. One motivation is from database query processing, where we have queries
to evaluate on a massive dataset, and we have stored some statistics about the dataset,
for inputs of certain shape. For example, the dataset might be a graph with vertices
having numerical identifiers, and we have computed histograms giving information about
the average number of vertices connected to elements in certain intervals. In order to
better estimate future queries, we may extrapolate the statistics to other unseen intervals.
One formalization of this problem, focused specifically on learning an unknown probability
distribution from statistics. was given in (Hu et al., 2022). In this setting, we have a set a
points X, and a collection of subsets of X, referred to as ranges. The random object we are
trying to learn is a distribution on X, and we try to learn it via samples of the probabilities
of ranges: that is, each distribution can be considered as a function mapping a range to
its probability. The main result of (Hu et al., 2022) is that if the set to subsets is itself
learnable, then the set of functions induced by distributions is learnable.

We generalize the setting of (Hu et al., 2022) in several directions. We start with
a hypothesis class which can consist of either Boolean-valued or real-valued functions on
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Learning Agnostic Realizable

Online Bounded Online FatSh Rakhlin et al. (2015b) Uniform Regret or Finite Online Dim.
Preserved (Cor. 36) Not Preserved for Dual Dist. Class (Prop. 52)

PAC Finite FatSh Bartlett and Long (1995) Finite OIG dimension Attias et al. (2023)
Preserved (Thm 16) Not Preserved for Distr

or Dual Distr. Class (Prop. 31)

Table 1: Dimensions governing learning, and preservation moving from a base class to its
statistical class

some set X, indexed by a parameter space Y . We use such a “base hypothesis class” to form
several new “statistical hypothesis classes”, which will be real-valued functions over random
objects. Two such classes are indexed by distributions µ, where the corresponding functions
map an input to an expectation against µ. In one class, µ represents randomization over
the parameters, and the functions will be on the input space of the original class; in the
second class, µ represents randomization over range elements. We show that learnability of
the base class allows us to derive learnability of the corresponding statistical classes, and
establish new bounds on sample complexity of learning in terms of dimensions of the base
class.

We analyze these two statistical classes using a broader result about random hypotheses
classes inspired by work in model theory (Keisler, 1999; Ben Yaacov and Keisler, 2009; Ben
Yaacov, 2009). In the PAC learning scenario, we can apply prior work in model theory (Ben
Yaacov, 2009) to conclude that when a random family of hypothesis classes is uniformly
learnable, then the expectation of this class is also learnable. We show that this implies
preservation of learnability of both distribution classes. We refine these arguments in several
directions: to apply to new statistical classes, to deal with real-valued functions in the base
class, and to get bounds on the number of samples needed to learn. We also examine
whether the same phenomenon applies to other learning scenarios: e.g. realizable PAC
learning, online learning.

Contributions: preservation and sample complexity. Our results concern whether
various notions of learnability are preserved when moving from a base hypothesis class
to the corresponding statistical class. For agnostic learning, both PAC and online, we
provide positive results on preservation, accompanied by sample complexity bounds for the
statistical class, stated in terms of combinatorial dimensions of the base class. For realizable
learning, we show negative results. A high-level overview is in Table 1, which highlights
the positive and negative preservation results we prove in moving from a base class to a
statistical class, and the combinatorial dimension that characterizes learnability. In each
of the positive results, we supply sample complexity bounds, not listed in the table. The
formal definitions are in the next sections.

Organization. Section 2 reviews different flavors of learnability that we study here. Section
3 defines the notion of “statistical class built over a base class” that will be our central object
of study. Section 4 studies preservation of PAC learnability for statistical classes, in two
variations of the learning set up: agnostic and realizable. Section 5 performs the same
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study for online learning. We discuss related work in Section 6. We close with conclusions
in Section 7. We defer the proofs of a few propositions and lemmas to the appendix.

2 Preliminaries

In our preliminaries, and elsewhere in the paper, we use fact environments to denote results
quoted from prior work.

Hypothesis classes and their duals. Our notions of learnability will be properties of a
hypothesis class, a class of functions H from some (in our case, usually infinite) set X, the
range space of the class, to some interval in the reals, usually [0, 1]. A concept class C is a
family of subsets of X, which can be considered as a hypothesis class with range {0, 1}.

Functions in a hypothesis class H are expressed as hp where p ranges over the parameter
space of the class Y . We write Cp for a concept that is in a concept class C.

A family of functions on X indexed by a set Y can be considered as a single function
from X × Y to [0, 1]. This corresponds naturally to a function Y × X → [0, 1], and thus
also defines a class of functions on Y indexed by X, the dual class of H.

PAC learning. We recall the standard notion of a function class being learnable (Kearns
and Schapire, 1994) from random supervision: Probably Approximately Correct or PAC
learnable below. Fixing X, let Z = X × [0, 1]. We call the elements of Z samples. For each
hypothesis h ∈ H and sample z = (x, y), let lh(z) = (h(x)−y)2: this is the loss of using this
hypothesis at sample z. For a distribution P over Z, we let ExpLossP (h) be the expected
loss of h with respect to P . We let BestExpLoss(P ) be the infimum of ExpLossP (h) over
every h ∈ H.

A PAC learning procedure is a mapping A from finite sequences in Z to H. For pa-
rameters δ, ε > 0, we say that H is δ, ε agnostic PAC learnable if there exists a learning
procedure A and number nδ,ε such that for n ≥ nδ,ε, for every distribution P over Z,

Pn(~z | ExpLossP (A(~z)) ≤ BestExpLossP + ε) ≥ 1− δ.

Here Pn denotes the n-fold product of P .

If a specific number nδ,ε suffices, we say that H is δ, ε agnostic PAC learnable with
sample complexity nδ,ε. Alternately, if we just refer to bounding the δ, ε sample complexity
of PAC learning H, we mean the smallest number nδ,ε that suffices.

We say H is agnostic PAC learnable if and only if it is δ, ε agnostic PAC learnable for all
δ, ε > 0. Given a function S(ε, δ) from ε, δ ∈ [0, 1] to integers, we say that H is agnostic PAC
learnable with sample complexity S if for all ε, δ ∈ [0, 1], H is δ, ε agnostic PAC learnable
with sample complexity S(δ, ε).

The qualification “agnostic” above refers to the fact that we do not assume that there
is an unknown true hypothesis that lies in our hypothesis class. Instead, we just try to find
the best approximation in our class. This contrasts with realizable PAC learning, where
we consider a true hypothesis h0 ∈ H, and randomly choose only inputs, with the outputs
taken from h0. Realizable PAC learning requires the learning procedure to work as above,
without knowledge of h0 ∈ H or the distribution, but only for samples (x, h0(x)) produced
by applying h0 to the randomly chosen x.
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For us, the distinction between agnostic and realizable PAC learning will be important
only in the case of real-valued functions:

Fact 1 (See, e.g. Shalev-Shwartz and Ben-David (2014)) For a concept class, real-
izable PAC learnability coincides with agnostic PAC learnability. But the sample complexity
can be lower in the realizable case.

Fact 2 Attias et al. (2023) For real-valued classes, agnostic learnability is strictly more
restrictive than realizable learnability.

Online learning. Another framework we consider is online learning of a hypothesis class
H (Ben-David et al., 2009). Here the learner receives examples with supervision, but not
picked randomly, but “adversarially”: that is, arbitrarily, so the learner must consider
the worst case. A (probabilistic) online learning algorithm A receives a finite sequence
s = (x1, y1) . . . (xn, yn) of pairs from X × [0, 1] along with an input x from X and returns
a probability distribution over y ∈ [0, 1]. An adversary is an algorithm that receives a se-
quence of triples s = (x1, y1, y

′
1) . . . (xn, yn, y

′
n) and returns a new pair (x, y). Informally the

first pair of each triple represents an input and real-valued output, while the last component
is the value predicted by the learner. A run of a learning algorithm against an adversary
for T rounds is a sequence s = (x1, y1, y

′
1) . . . (xT , yT , y

′
T ), where for each i < T , xi+1, yi+1

is chosen by running the adversary on the prefix up to i, and y′i+1 is chosen by running the
learning algorithm on the concatenation of the prefix up to i, projected to be a sequence
of pairs, and the new adversary-generated example (xi+1, yi+1). The loss of the algorithm
on such a run of length T is, by default, Σi≤T |y′i − yi|. 1 The regret for the run is the
difference between the loss of the algorithm and the infimum of the loss obtained by an
algorithm that uses a fixed h ∈ H to predict at each step. Note that if the run is highly
inconsistent with all h ∈ H, it will be much more difficult to predict; but each individual h
will also fail to predict well. If we fix a strategy for the adversary, along with a probabilistic
learner, we get a distribution on runs, and hence an expected regret. The minimax regret
is the infimum over all learning algorithms of the supremum over all adversaries, of the
expected regret. Following (Rakhlin et al., 2015b, Definition 2) we call a hypothesis class
online learnable in the agnostic case if there is a learning algorithm whose minimax regret
against any adversary in T rounds is dominated by T as T goes to ∞.

As with PAC learning, “agnostic” here is contrasted to online learnability in the realizable
case. This refers to the restriction on adversaries: they must be realizable, in that each
should come from applying some hypothesis h0 ∈ H. We say that H is online learnable in
the realizable case if there is an algorithm that has bounded loss, uniform in T , for each
realizable adversary.

Although the definitions of learnability are very different, for concept classes the dividing
line for learnability is the same in the realizable case as in the agnostic case:

Fact 3 Ben-David et al. (2009): A concept class is online learnable in the realizable case
if and only if it is online learnable in the agnostic case.

1. Here we use absolute value in online learning, but for our purposes square distance, as in PAC learning,
would yield the same results.
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In fact, both of these are the same as having “bounded Littlestone dimension” defined
below.

As with PAC learning, the dividing line for learnability diverges in the case of real-valued
functions.
Dimensions of real-valued families. Each of our notions of learnability corresponds to
a combinatorial dimension of the class. For agnostic PAC learning, the characterization
involves the fat-shattering definition originating in (Kearns and Schapire, 1994).

Definition 1 (Fat shattering) For γ ∈ (0, 1], we say H γ fat-shatters a set A ⊆ X if
there exists a function s : A→ [0, 1] such that, for every E ⊆ A, there exists some hE ∈ H
satisfying: For every x ∈ A \E, hE(x) ≤ s(x)− γ, and for every x ∈ E, hE(x) ≥ s(x) + γ.
The γ fat-shattering dimension of H, denoted FatSHDimγ(H), is the supremum of the
cardinalities of a γ fat-shattered subset of X.

These dimensions give bounds on sampling:

Fact 4 (Bartlett and Long (1995, Thm 14)) FatSHDimγ(H) is finite for all γ if and
only if H is agnostic PAC learnable. In that case, there is an agnostic δ, ε PAC learning
algorithm with sample complexity

O

(
1

ε2
·
(

FatSHDim ε
9

(H) · log2

(
1

ε

)
+ log

(
1

δ

)))
.

The notion of dimension simplifies for a concept class. A concept class is said to shatter
a subset A of X if for every E ⊆ A there is cA ∈ C with cA containing E and disjoint from
A \E. The Vapnik-Chervonenkis (VC)-dimension of C is the supremum of the cardinalities
of shattered subsets.

Agnostic online learning is linked to a sequential version of the fat-shattering dimension,
defined in (Rakhlin et al., 2015b).

Definition 2 (Sequential fat-shattering dimension and Littlestone dimension) Let
{−1, 1}<d denote

⋃d−1
t=0 {−1, 1}t.

A binary tree of depth d in X is a function z : {1,−1}<d → X. Given such a binary
tree and t < d, let zt be the restriction of z to inputs in {1,−1}t. If B ∈ {1,−1}d is a
branch, we write zt(B) to denote zt applied to the restriction of B to the first t entries.

Branches B ∈ {−1, 1}d can also be viewed as functions B : {0, . . . , d − 1} → {−1, 1},
with B(t) the tth entry of B.

For γ ∈ (0, 1] say H γ fat-shatters a binary tree z in X, where z is of depth d, if
there exists a binary tree s of depth d in R and a labelling of each B ∈ {1,−1}d with some
hB ∈ H satisfying: For every 0 ≤ t < d, if B(t) = −1, then hB(zt(B)) ≤ st(B) − γ

2 and,
if B(t) = 1, then hB(zt(B)) ≥ st(B) + γ

2 . The γ sequential fat-shattering dimension of H,
denoted FatSHDimSeq

γ (H), is the supremum of the depths of γ fat-shattered binary trees in
X.

In the discrete case, a concept class shatters a binary tree T : {−1, 1}<n → X when for
every branch B ∈ {−1, 1}n of the tree, there is cB ∈ C such that for all k < n, T (B|{−1,1}k)
is in cA if and only if B(k) = 1. The Littlestone dimension of C is the supremum of the
depths of shattered binary trees.
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Littlestone dimension characterizes online learnability (realizable or agnostic), in the
case of concept classes, analogously to the way VC dimension characterizes PAC learnability
(realizable or agnostic):

Fact 5 (Alon et al. (2021, Theorem 12.1)) If H is a {0, 1}-valued concept class with
Littlestone dimension at most d, then the minimax regret of a T -round online learner is
bounded by

O(
√
dT ).

Conversely, if the dimension is infinite, then the minimax regret is infinite.

In the real-valued case, the bound is more complicated, but finiteness of all sequential
fat-shattering dimensions is equivalent to agnostic online learnability:

Fact 6 (Rakhlin et al. (2015b, Part of Proposition 9)) If H is a hypothesis class tak-
ing values in [0, 1], then the minimax regret of a T -round online learner is bounded below
by

1

4 ·
√

2
sup
γ

min

(√
FatSHDimSeq

γ (H) · T , T
)

and above by

inf
γ

(
4 · γ · T + 12 ·

√
T ·
∫ 1

γ

√
FatSHDimSeq

β (H) log

(
2 · e · T
β

)
dβ

)
.

In particular, the minimax regret is sublinear if and only if FatSHDimSeq
γ (H) is finite

for every γ.

Duality and agnostic learnability. It is well-known that agnostic PAC learnability is
closed under moving to the dual:

Fact 7 Kleer and Simon (2023) A function class is agnostic PAC learnable exactly when
its dual class is.

Using the combinatorial characterizations, one can show that same for online learning
(see Appendix A):

Proposition 3 A function class is agnostic online learnable exactly when its dual class is.

3 Hypothesis classes from statistical objects

We now turn to the basic object of study in our paper:

Definition 4 (Distribution class and Dual Distribution class) Given a concept class
C on X, parameterized by Y the distribution function class of C, denoted DistrC, is a real-
valued hypothesis class on the same range space X, consisting of the hypotheses hµ indexed
by the distributions µ, with σ-algebra Σµ, on Y such that for each x, the set of p ∈ Y such
that cp(x) = 1 is measurable.
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The hypothesis hµ is defined as the function mapping x to the probability, with respect to
µ, that cp(x) = 1. Note that, WLOG, we can assume that the Σµ is the Σ-algebra generated
by {{p ∈ Y : cp(x) = 1} : x ∈ X}, since hµ is completely determined by the restriction of µ
to this Σ-algebra.

The dual distribution function class of C, denoted DualDistrC, is defined as above, but
starting with the dual class of C. That is, a hypothesis is parameterized by a distribution µ
on X, such that each Cp ∈ C is measurable. The function hµ maps p ∈ Y to to µ(Cp).

We extend these definitions to work on top of a real-valued function class H, replacing
probability under µ with expectation. For the distribution function class, the functions are
indexed by distributions µ on Y again, but now we restrict to distributions µ such that each
h ∈ H is a µ measurable function, and hµ maps h ∈ H to Eµ(h). As with the concept class,
we can WLOG assume that Σµ is the σ-algebra generated by the sets {y : hy(x) ∈ I} where
I is an interval, x ∈ X.

Example 3.1. Let H be the concept class of rectangles over the reals. The range space
is thus the collection of points in the plane – pairs of reals – while the parameter space
consists of 4-tuples of reals, representing the lower left corner and upper right corners of
the rectangle.

The dual distribution class of H will be parameterized by “random elements of the
plane”: functions induced by distributions µ over the plane. Each such µ induces a function
hν on rectangles, mapping each rectangle to its ν-probability. We can equivalently consider
hµ as a real-valued function on 4-tuples. In learning such a function hµ, we will be given
supervision in the form of a sequence of pairs, each pair consisting of a rectangle (or 4-tuple)
and the µ-probability that a point is in the rectangle.

In contrast, the distribution class of H is parameterized by “random rectangles”: func-
tions induced by distributions ν over 4-tuples. Given such a ν, we have a function hν that
maps a real pair ~x to the ν probability that ~x is in rectangle hν . In learning such a function,
our supervision will consist of a point in the real plane and the probability that the point
is in random rectangle ν.

Example 3.2. Consider the hypothesis classH consisting of rational functions P (x)
Q(x) , where

P (x) and Q(x) are real polynomials restricted to an interval where Q has no zeros (with the
function defined to be zero off this interval), the degrees of P and Q are at most 5, and the
value of the quotient function on the interval is in [0, 1]. This is a class with parameters ~p
representing the coefficients of P and Q. We can easily show (see the appendix for a broader
argument) that this class of real-valued functions indexed by ~p is agnostic PAC learnable.

The dual distribution class is parameterized by “random arguments” to these functions:
with each distribution inducing a function on parameters given by integrating against the
distribution. The distribution class will be parameterized by “random coefficients”: each
distribution will induce a function on arguments x obtained by integrating the random
function against the distribution on parameters.

Only the dual distribution class has been studied in the past literature, and exclusively
for the case of a concept class. The following result is our starting point:
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Fact 8 Hu et al. (2022) Suppose a concept class C is (Agnostic or Realizable) PAC learn-
able, and the VC-dimension of the class is λ. Then the dual distribution function class of C
is Agnostic PAC learnable with sample complexity Õ( 1

ελ+1 ) where Õ indicates that we drop

terms that are polylogarithmic in 1
ε , 1

δ for constant λ.

The motivation in Hu et al. (2022) was from databases: we want to learn the selectivity
of a table in a databases. Given some examples of the density of the table in some intervals,
we want to predict the density in a new interval. Hu et al. (2022) deals with computational
complexity as well as sample complexity, but here we will only be interested in sample
complexity bounds.

3.1 Expectation of a Measurable Family of Hypothesis Classes

We will show that we can embed the distribution class and the dual distribution class in a
more general construction for hypothesis classes, where parameters and range elements are
treated symmetrically. This construction is fundamentally connected to the randomization
construction for hypothesis classes coming from logical formulas, originating with (Keisler,
1999), refined later in (Ben Yaacov and Keisler, 2009; Ben Yaacov, 2009).

We will start with a construction that works on something much more general than a
hypothesis class.

Definition 5 (Measurable family of hypothesis classes) Assume that (Ω,Σ, µ) is a
probability space, and F = (Hω : ω ∈ Ω) is a family of hypothesis classes Hω : X×Y → [0, 1]
such that for each x ∈ X, y ∈ Y , the function ω 7→ Hω(x, y) is measurable. We call such a
family a measurable family of hypothesis classes on X parameterized by Y .

Thus a measurable family can be thought of as a randomized hypothesis class, where for
each x ∈ X, y ∈ Y we randomly choose a real-valued output.

Definition 6 (Expectation class of a measurable family of hypothesis classes) Let
F = (Hω : ω ∈ Ω) be a measurable family of hypothesis classes. Then the expectation class
of F is the function EF : X × Y → [0, 1] defined by

EF(x, y) = Eµ[Hω(x, y)].

This is a single hypothesis class, with range space X and parameter space Y .

3.2 Embedding Distribution Classes in Expectation Classes

Definition 7 (X-valued random variables) If (Ω,Σ, µ) is a probability space and (X,ΣX)
is a measurable space, then let RVX be the set of X-valued random variables over Ω: that
is, measurable functions from Ω→ X.

Definition 8 (Compatibility with a hypothesis class; Randomized version of a hypothesis class)
Let H be a hypothesis class on range space X parameterized by Y , and let Ω∗ = (Ω,Σ, µ)
be a probability space. A Y -valued random variable Y ′ is said to be compatible with H if
for each x ∈ X the function mapping ω ∈ Ω to hY ′(ω)(x) is measurable in the usual sense.
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We write CompatParamRV(H) for the set of Y -valued random variables that are com-
patible with a given H, omitting the dependence on Ω∗ for brevity.

For a given Y ′ ∈ CompatParamRV(H) we refer to the real-valued function on X above
as the Y ′-randomized version of H.

Thus each compatible Y -valued random variables thus give an alternative notion of “random
parameter”.

Definition 9 (Parameter randomized version of a hypothesis class) Given a hypoth-
esis class H on range space X parameterized by Y and probability space (Ω,Σ, µ), we define
a measurable family, which we will call the parameter randomized family of H, denoted
ParamRandom(H) = ((ParamRandom(H))ω : ω ∈ Ω). Given ω ∈ Ω, let (ParamRandom(H))ω
be the hypothesis class on X consisting of the functions: For each Y ′ ∈ CompatParamRV(H),
the function λx ∈ X.hY ′(ω)(x).

Finally, we can define the expectation class that we want:

Definition 10 (Parameter randomized expectation class) We consider the hypothe-
sis class denoted H(CompatParamRV(H)): it is on the same range space X, but param-
eterized by CompatParamRV(H). Given Y ′ ∈ CompatParamRV(H) hY ′ maps x ∈ X to
Eµ of the Y ′-randomized version of H. That is, it is the expectation class of the parameter
randomized family of H.

The parameter randomized expectation class of a hypothesis class H is very similar to
the distribution class of H. The difference is that the former considers Y -valued functions
from a fixed probability space, while the latter deals with the induced distributions on Y ,
ignoring the underlying sample space. We now show that by choosing the probability space
carefully, we can close the gap.

Let ν be a distribution on Y , where the underlying Σ-algebra is generated by Sx,I =
{p ∈ Y |hp(x) ∈ I} for I an interval and x ∈ X. We say ν is induced by a function f from
Ω to Y (with respect to (Ω,Σ, µ)) if ν(Sx,I) = µ({ω|f(ω) ∈ Sx,I}.

The following simple result in measure theory states that by choosing (Ω,Σ, µ) appro-
priately, all the distributions over Y are induced by functions from (Ω,Σ, µ):

Proposition 11 For any Y we can find (Ω,Σ, µ) such that for every distribution ν over
the Σ-algebra on Y generated by Sx,I , there is a function f such that ν is induced by f with
respect to (Ω,Σ, ν).

Although the result is well-known (see, e.g. Fremlin (2002)), we sketch the proof:
Proof We choose Ω∗ = (Ω,Σ, µ) to be a product of all measure spaces on Y . Then every
measure is induced as a projection on one component.

From the proposition we see:

Proposition 12 By choosing Ω∗ as in Proposition 11, we have H(CompatParamRV(H))
contains all the functions in the distribution class of H. Thus if the former is learnable, in
any of the variants we have discussed (agnostic PAC, agnostic online etc.), then so is the
latter, with the same sample complexity bounds.
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We can analogously talk about X-valued random variable X ′ being compatible with H,
and define the class H(CompatRangeRV(H)) of hypothesis parameterized by such random
variables: these subsume the dual distribution class.

We will use these embeddings below to transfer results about learnability of the expec-
tation class of a measurable family of hypothesis classes to results about the distribution
and dual distribution classes. We emphasize that the notion of measurable family is much
more general than the distribution class and dual distribution class. In the distribution
class, only parameters are randomized, while range elements are deterministic, while in the
dual distribution class it is the reverse. The measurable family allows us to model situations
where the range elements and parameters are both randomized, in a correlated way.

Example 3.3. Consider a concept class C containing characteristic functions h(x)y1,y2
where both the range elements x and the parameters y1, y2 are integers. The concept
contains any x that an even integer between y1 and y2. Thus as we vary the parameters
y1, y2 we get the set of intervals intersected with the even numbers.

Fix a probability space Ω∗ = (Ω,Σ, µ0). The parameterized randomized family of H
is a measuable family of hypothesis class parameterized by a “random pair of integers”: a
measurable function taking ω ∈ Ω to a pair y1, y2. The measurable family contains a class
for each ω ∈ Ω parameterized by such functions P , where for each ω and P , the function
maps x to C(x)P (ω). The expectation class of this measurable family is the distribution
class of the concept class C.

If we reverse the role of parameters and range values, we get a measurable family of
concept classes indexed by random integers X, where given ω and X we map (y1, y2) to
C(X(ω))y1,y2 . The expectation class of this measurable family is the dual distribution class
of C

We could also consider measurable families parameterized by functions from ω to triples
(x, y1, y2), which represent a correlated pair X,P of random range elements and random
parameters.

While the notation used in Ben Yaacov (2009) is different, it is proven there that a
uniform bound on fat-shattering dimensions of the hypothesis classes in a measurable family
implies finite fat-shattering dimension, and thus PAC learnability, of the expectation class.

Definition 13 For γ > 0, say that a measurable family of hypothesis classes F has uni-
formly bounded γ fat-shattering dimension it there is some d such that each class H ∈ F
has γ fat-shattering dimension at most d.

Fact 9 (Ben Yaacov (2009, Corollaries 4.2, 4.3)) If F is a measurable family of hy-
pothesis classes, and for every γ > 0, the family has uniformly bounded γ fat-shattering
dimension, then EF has finite fat-shattering dimension.

Now let us return to the distribution class, and recall that it can be embedded in the
parameter randomized family ofH, which associates the function λx ∈ X.hY ′(ω)(x). IfH has
finite γ fat-shattering dimension d, then for any ω, the corresponding class of functions above
also has fat-shattering dimension d: thus the measurable family has uniformly bounded γ
fat-shattering dimension. Similarly for the dual distribution class. Thus we get the following
corollary of Fact 9:

10
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Corollary 14 If H is agnostic PAC learnable, so are the distribution class and dual dis-
tribution classes.

In Section 4, we will adapt the proof from Ben Yaacov (2009) to provide concrete sample
complexity bounds on learnability of the expectation class of a measurable family, which
will provide improved bounds for the distribution and dual distribution class.

4 PAC learning of statistical classes

This section will be devoted to a more fine-grained investigation of how PAC learnability
for these statistical classes follow from PAC learnability of the base class. Our first main
result is a new proof that agnostic PAC learnability is preserved by moving to any of these
classes, along with a new bound on sample complexity in terms of dimensions of the base
class:

Remark 15 A warning that throughout this section and the next, we ignore several mea-
surability issues that arise when uncountable hypothesis classes are considered – e.g. mea-
surability of sets that involve intersecting over uncountabiy many objects. These subtleties
do not arise when the parameter set and range sets are countable, and all the results in the
next sections are true without qualification in this case. Extensions to the uncountable case
require further sanity conditions on the hypothesis classes. We defer a discussion of this to
Appendix C.

Theorem 16 If F is a measurable family of hypothesis classes such that each class H ∈ F
has ε

50 fat-shattering dimension at most d, one can perform agnostic PAC learning on the
expectation class EF with sample complexity:

O

(
d

ε4
· log2 d

ε
+

1

ε2
· log

1

δ

)
.

If F is a measurable family of {0, 1}-valued concept classes with VC-dimension at most d,
one can perform agnostic PAC learning on the expectation class EF with sample complexity:

O

(
1

ε2

(
d log

d

ε
+ log

1

δ

))
.

Thus, via Proposition 12, we get the same bounds for the distribution class and (moving to
the dimension of the dual class) for the dual distribution class.

Example 4.1. Recall Example 3.2, where we consider a family H of rational functions
definable by real-coefficients ~p. The distribution function class of H is parameterized by
random ~p. It is agnostic PAC learnable with sample complexity as in Theorem 16. Thus
given supervision based on the expectations for various xi, we can learn the hypothesis in
the distribution class that has the best expected fit in terms of sum of differences.

Thus the next few subsections will be devoted to the proof of Theorem 16. which will
complete our sample complexity analysis of agnostic PAC learning for statistical classes.

11
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4.1 Combinatorial and statistical tools

Our arguments for PAC learnability will go through the following dimension:

Definition 17 (Glivenko-Cantelli dimension) The Glivenko-Cantelli dimension of a
hypothesis class, denoted GCH(ε, δ) is parameterized by δ, ε > 0:

GCH(ε, δ) = min {n : ∀m ≥ n, ∀D Distribution on X

Dm

{
(x1, ..., xm) | ∃h ∈ H,

∣∣∣∣ 1

m
· (Σm

i=1h(xi))−
∫
h(u)dD(u)

∣∣∣∣ > ε

}
≤ δ}

Recall that the law of large numbers implies that if we fix any bounded measurable
function f into the reals, and are given a δ and ε, then we can find an n so that, for any
distribution D, for all but δ of the n-samples from the distribution, the sample mean of
f is within ε of the the mean of f . Most proofs that a class is agnostic PAC learnable
go through showing that for each ε, δ > 0, the dimension GCH(ε, δ) is finite. From the
Glivenko-Cantelli dimension for ε and δ, we can easily obtain bounds on the number of
samples needed to learn to given tolerances δ and ε.

Glivenko-Cantelli bounds are used to derive learnability bounds in (Alon et al., 1997)
and (Bartlett and Long, 1995, Theorem 14). The proof of (Anthony and Bartlett, 2009,
Theorem 19.1) gives the following version of the connection between these concepts:

Fact 10 (Anthony and Bartlett (2009)) The sample size needed to learn H with error
at most ε and error probability at most δ is at most GCH

(
ε
2 ,

δ
2

)
.

Because the bounds we will derive for GCH(ε, δ) will always be polynomial in ε and δ, the
factors of 2 in this fact will only change the bound by a constant multiple, which will only
change the constant within asymptotic notation.

We will follow the methods of (Ben Yaacov, 2009), which relate upper and lower
bound on the combinatorial fat-shattering dimensions to upper and lower bounds on the
Rademacher mean width. We will be able to then move to bounds on the Rademacher width
of the expectation class, and from there to bound on GC-dimension of the expection class.

Definition 18 [Width of a set in a direction] Let A ⊆ Rn be bounded. Given ~b ∈ Rn, we
define w(A,~b), the width of A in the particular direction ~b, to be w(A,~b) = sup~a∈A~a ·~b.

Lemma 19 For any bounded A ⊆ Rn, the width function ~b 7→ w(A,~b) is Borel measurable.

Proof If A is countable, then w(A,~b) is the supremum of a countable family of continuous
functions of ~b, and is thus Borel measurable.

If D ⊆ A, then for every ~b, w(D,~b) ≤ w(A,~b). If D is dense in A, then for every ~a ∈ A,
~b ∈ Rn, and ε > 0, there is some ~d ∈ D such that |~b · (~a− ~d)| ≤ ε, so we can conclude that
w(D,~b) ≥ w(A,~b)− ε, so in fact, w(D,~b) = w(A,~b).

Every subspace of Rn is separable, so for every A there is a countable dense D, and
~b 7→ w(D,~b), and thus ~b 7→ w(A,~b), is measurable.

12
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Definition 20 [Mean width] Let β be a Borel probability measure on Rn. Define the mean

width of A w.r.t. β, w(A, β), as Eβ
[
w(A,~b)

]
, where ~b is a random variable with distribution

β. By the measurability result mentioned above, this is always defined.

If β is the distribution that samples uniformly from {+1,−1}n, we define the Rademacher
mean width, denoted wR(A), as w(A, β).

For any function h : X → [0, 1] and x̄ = (x1, . . . , xn) ∈ Xn, we let h(x̄) denote the
vector (h(x1), . . . , h(xn)). In particular, if H is a hypothesis class on X parameterized by
Y , x̄ = (x1, . . . , xn) ∈ Xn, and y ∈ Y , then H(x̄, y) = (H(x1, y), . . . ,H(xn, y)).

For any hypothesis class H on X parametrized by Y and x̄ = (x1, . . . , xn) ∈ Xn, let
H(x̄, Y ) be the set of vectors

{h(x̄) : h ∈ H} = {H(x̄, y) : y ∈ Y } ⊆ [0, 1]n.

Then we extend the definition of Rademacher mean width to be a function of an integer
n, given the class H on X parametrized by Y ; RH(n) = supx̄∈Xn wR(H(x̄, Y )). We will
refer to this function as the Rademacher mean width of the class H, but this only differs
from the “Rademacher complexity” of H in other literature by a factor of n.

The reason for looking at Rademacher mean width will be that it behaves well under
averaging with respect to an arbitrary measure: see Theorem 23 to follow.

From a bound on the Rademacher width of a function class, we can infer a bound
on the Rademacher width of its expectation. Using this and some relationships between
Rademacher width bounds and fat-shattering, we are able to bootstrap from uniform bounds
on a measurable family to bounds on the expectation class, proving Theorem 16.

4.2 Bounding the mean width for a derived class in terms of a base class

In this subsection, we will establish connections between combinatorial dimensions of each
class of sets or functions in a measurable family and the dimensions of the expectation class
of the family. Following the approach in (Ben Yaacov, 2009), we will first establish this
connection for notions of mean width.

We will show that Rademacher mean width does not increase under averaging. With
that in hand, if we are able to bound learnability of each class in a family F through mean
width, the same bound will apply to EF . This strategy stems from (Ben Yaacov, 2009,
Theorem 4.1), where it was applied to Gaussian mean width.

We can now make a note about how width of the set of vectors induced by a measurable
family behaves under expectation.

Lemma 21 Let (Ω,Σ, µ) be a probability space, and let F = (Hω : ω ∈ Ω) be a measurable
family of hypothesis classes on X. Fix x̄ ∈ Xn and ~b ∈ Rn. Then

w(EF(x̄, Y ),~b) ≤ Eµ[w(Hω(x̄, Y ),~b)].

Here recall from Definition 20 that Hω(x̄, Y ) is the image of the set of vectors for hypothesis
class Hω at x̄, as y ranges over Y .

13
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Proof The supremum of the expectations of a family of functions is at most the expectation
of their suprema, so we have

w(EF(x̄, Y ),~b) = sup
y∈Y

~b · (EF(x̄, y))

= sup
y∈Y

Eµ[~b · (Hω(x̄, y))]

≤ Eµ

[
sup
y∈Y

~b · Hω(x̄, y)

]
= Eµ[w(Hω(x̄, Y ),~b)].

which proves the lemma. 2

And we can now extend that statement about width of sets to a statement about mean
width.

Lemma 22 Let (Ω,Σ, µ) be a probability space, and let F = (Hω : ω ∈ Ω) be a measurable
family of hypothesis classes on X.

Fix n, x̄ ∈ Xn, and a Borel probability measure β on Rn. Then

w(EF(x̄, Y ), β) ≤ Eµ[w(Hω(x̄, Y ), β)].

Proof To prove this, we only need to unfold the definition of w(A, β) and apply Lemma 21
and Fubini’s Theorem.

w(EF(x̄, Y ), β) = Eβ
[
w(EF(x̄, Y ),~b)

]
≤ EβEµ[w(Hω(x̄, Y ),~b)]

= EµEβ[w(Hω(x̄, Y ),~b)]

= Eµ [w(Hω(x̄, Y ), β)]

We are now ready to bound the Rademacher mean width of an expectation using the
Rademacher mean width of the underlying class:

Theorem 23 (Pushing a Mean Width Bound through an Expectation) Let (Ω,Σ, µ)
be a probability space, and let F = (Hω : ω ∈ Ω) be a measurable family of hypothesis classes
on X.

2. This result is implicit in the proof of (Ben Yaacov, 2009, Theorem 4.1). For a fixed x̄, it is stated there
that EF(x̄, Y ) ⊆ Eµ[Conv(Hω(x̄, Y ))], where the latter expectation is an expectation of convex compact

sets. This amounts to saying that for every ~b ∈ Rn,

w(EF(x̄, Y ),~b) ≤ Eµ[w(Hω(x̄, Y ),~b)].

14
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Then

REF (n) ≤ sup
ω
RHω(n).

Proof For each n, where β is uniformly distributed on {−1, 1}n, it suffices to show that

sup
x̄∈Xn

w(EF(x̄, Y ), β) ≤ sup
ω

sup
x̄∈Xn

w(Hω(x̄, Y ), β),

which, as the suprema commute, amounts to showing that for each x̄ ∈ Xn,

w(EF(x̄, Y ), β) ≤ sup
ω
w(Hω(x̄, Y ), β),

which follows from Lemma 22 as

Eµ[w(Hω(x̄, Y ), β)] ≤ sup
ω
w(Hω(x̄, Y ), β).

4.3 Glivenko-Cantelli Bounds through Mean Width

Above we have seen how to estimate how moving to an expectation impacts means width.
We will now look at the impact on Glivenko-Cantelli dimension. We can bound the
Glivenko-Cantelli dimension with Rademacher mean width. The following is a restate-
ment of (Wainwright, 2019, Theorem 4.10) in terms of GC-dimension, using the fact that
for any probability measure µ on X and any hypothesis class H on X parameterized by Y ,
the Rademacher complexity 1

nEµn [wR(H(x̄, Y ))] is at most 1
nRH(n).

Fact 11 Let H be a hypothesis class on X parameterized by Y . For any δ > 0 and n, then

GCH

(
2 · RH(n)

n
+ δ, exp

(
−nδ

2

2

))
≤ n.

We can rephrase this fact in a form that makes it easier to calculate the Glivenko-Cantelli
dimension.

Lemma 24 (From Rademacher Width of a Base Class to GC of the Expectation class)
Let (Ω,Σ, µ) be a probability space, and let F = (Hω : ω ∈ Ω) be a measurable family of
hypothesis classes on X.

For any ε, δ > 0, if N is such that for all n ≥ N ,
RHω (n)

n ≤ ε
4 for each ω ∈ Ω, then

GCEF (ε, δ) ≤ N +
8

ε2
log

1

δ
.

Roughly speaking, the lemma says that, when fixing ε, if we can find a linear bound on
the Rademacher mean width, then we can bound the ε, δ GC dimension, which will allow
us to get a bound on the ε, δ sample complexity.
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Proof Suppose that for all n ≥ N and ω ∈ Ω,
RHω (n)

n ≤ ε
4 . Now fix n ≥ N + 8

ε2
log 1

δ , and

observe that
RHω (n)

n ≤ ε
4 still holds for all ω ∈ Ω.

Then by Theorem 23, we see that n is also large enough that REF (n)
n ≤ ε

4 . Then setting

γ = ε− 2REF (n)
n , our assumption implies that γ ≥ ε

2 . Plugging in γ for δ in Fact 11 we have

GCEF

(
ε, exp

(
−nγ2

2

))
≤ n. As γ ≥ ε

2 and n ≥ 8
ε2

log 1
δ , we have

exp

(
−nγ

2

2

)
≤ exp

(
−nε

2

8

)
≤ δ

Thus the conclusion holds.

4.4 Proof of Theorem 16 in the concept class case

We now apply the lemma on pushing Rademacher mean width through an expectation in
the context of a concept class.

In this setting, we can estimate RC(n) in terms of VC-dimension, defining RC(n)

Fact 12 (Wainwright (2019, Lemma 4.14 and Equation 4.24)) Assume that C is a
concept class with VC-dimension at most dC. Then for n ≥ 1,

RC(n) ≤ 2 ·
√
dC · n · log(n+ 1).

This fact will give us the bound on Rademacher mean width that we can plug in to the
“pushing through expectation lemma”, Lemma 24.

Recall that F = (Cω : ω ∈ Ω) is a measurable family where each Cω is a {0, 1}-valued
class (that is, a concept class) with VC-dimension at most d. Putting Fact 12 together with
Lemma 24, we see that to bound the GC-dimension of the expectation class EF , it suffices

to find N large enough that for n ≥ N , 2

√
d log(n+1)

n ≤ ε
4 , and add 1

ε2
log 1

δ . This inequality
is equivalent to

log(n+ 1)

n
≤ ε2

64d
,

which is guaranteed by
log n

n
≤ ε2

64d log 2
,

where we call the constant on the right γ, noting that we can assume ε ≤ 1 and thus
γ < e−1. Because the function on the left is decreasing for n > e, it suffices to find some N
for which this inequality holds. We try N = Cγ−1 log γ−1, and see that

logN

N
=

logC + log γ + log log γ−1

Cγ log γ−1
≤ γ

(
logC + 2 log γ−1

C log γ−1

)
≤ γ

(
logC + 2

C

)
,

using the fact that log γ−1 ≥ 1. For sufficiently large C (independent of γ), this is at most
γ as desired. Thus

N = O
(
γ−1 log γ−1

)
= O

(
d

ε2
log

d

ε2

)
= O

(
d

ε2
log

d

ε

)
,
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and

GCEF (ε, δ) ≤ N +
8

ε2
log

1

δ
= O

(
1

ε2

(
d log

d

ε
+ log

1

δ

))
.

By Fact 10, this completes the proof of Theorem 16 in the case of concept classes.

4.5 Extension to the real-valued case

We now extend to get sample complexity bounds for random objects, but where we start
with a measurable family of hypothesis classes. Our aim will be:

Theorem 25 For any ε, δ > 0, if F is a measurable family of hypothesis classes such that
each class H ∈ F has ε

50 fat-shattering dimension at most d, the sample complexity of
agnostic PAC learning on EF is bounded by:

O

(
d

ε4
log2 d

ε
+

1

ε2
log

1

δ

)
.

The challenge will be in getting the required linear bound on Rademacher mean widths,
so that we can apply the lemma on pushing mean width through an expectation, Lemma
24.

We will use covering numbers. The `p norm onRn is (
∑n

i=1 x
p
i )

1/p
, while `∞ is maxni=1 xi.

Definition 26 For A ⊆ Rn, γ > 0, and 1 ≤ p ≤ ∞, we let Np(γ,A), the γ covering
number of A, be the minimum number of γ-balls in the `p-metric that cover A.

We also let Np(γ,H, n) denote supx̄∈Xn Np(γ,H(x̄, Y )), with H(x̄, Y ) ⊆ [0, 1]n defined
as in Definition 20.

We have defined these for arbitrary p, but from now we will use only p = 2 and p =∞.
The relevant relation between them is that for all x ∈ Rn, we have |x|2 ≤

√
n|x|∞, so for

any A ⊆ Rn, N2(γ
√
n,A) ≤ N∞(γ,A), and for any H and n,

N2(γ
√
n,H, n) ≤ N∞(γ,H, n).

We can bound covering numbers using fat-shattering:

Fact 13 (From the proof of (Alon et al., 1997, Lemma 3.5)) Let H be a hypothesis
class on X parameterized by Y . Let d be the γ

4 fat-shattering dimension of H. Then

N∞(γ,H, n) ≤ 2

(
4n

γ2

)d log(2en/dγ)

.

Here e is the base of the natural logarithm.
To connect covering numbers to Rademacher mean width, we pass through another

width notion, Gaussian mean width.

Definition 27 Let β = (β1, . . . , βn), where the σis are independent Gaussian variables
with distribution N(0, 1). We define the Gaussian mean width, denoted wG(A), as w(A, β),
where

w(A, β) = Eβ
[
hA(~b)

]
as in the definition of Rademacher mean width.
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We can easily relate Gaussian to Rademacher mean width, using the following fact:

Fact 14 (Wainwright (2019, Exercise 5.5)) For any A ⊆ [0, 1]n,

wR(A) ≤
√
π

2
wG(A) ≤ 2

√
log nwR(A).

We will only use the first of these two inequalities, but together they show that Gaussian
and Rademacher mean widths are closely connected. Covering numbers allow us to estimate
how Gaussian mean width, and thus also Rademacher mean width, grows with dimension:

Fact 15 (Wainwright (2019, Equation 5.36)) For A ⊆ Rn with `2-diameter at most
D, and 0 ≤ γ ≤ D,

wG(A) ≤ γ
√
n+ 2D

√
logN2(γ,A).

We will concern ourselves with A ⊆ [0, 1]n, so D ≤
√
n. Thus for 0 ≤ γ ≤ 1, we plug in

γ
√
n ≤ D, and get

wG(A) ≤ γn+ 2

√
n logN2(γ

√
n,A).

Combining the previous two facts gives us a straightforward way to relate covering
numbers to Rademacher mean width:

Corollary 28 Let A ⊆ [0, 1]n and let γ ∈ [0, 1]. Then

wR(A) ≤
√
π

2

(
γn+ 2

√
n logN2(γn,A)

)
≤
√
π

2

(
γn+ 2

√
n logN∞(γ,A)

)
.

We now prove the remainder of Theorem 16, using the following bound on Glivenko-Cantelli
dimension:

Theorem 29 For any ε, δ > 0, if F is a measurable family of hypothesis classes such that
each class H ∈ F has ε

50 fat-shattering dimension at most d, then

GCEF (ε, δ) = O

(
d

ε4
log2 d

ε
+

1

ε2
log

1

δ

)
.

Proof By Lemma 24, it suffices to show that there is a constant C > 0 such that if

n ≥ C d

ε4
log2 d

ε
,

then
RH(n)

n
≤ ε

4
.
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As an intermediate bound, we can use Corollary 28 to bound the Rademacher complexity
in terms of covering numbers, using γ = ε√

32π
:

RH(n)

n
= sup

x̄∈Xn

wR(H(x̄, Y ))

n

≤ sup
x̄∈Xn

√
π

2

(
γ + 2

√
logN∞(γ,H(x̄, Y ))

n

)

≤
√
π

2

(
γ + 2

√
logN∞(γ,H, n)

n

)

=
ε

8
+

√
2π logN∞(γ,H, n)

n
.

Thus it suffices to show that for suitably large n,√
2π logN∞(γ,H, n)

n
≤ ε

8
,

or equivalently,
logN∞(γ,H, n)

n
≤ ε2

128π
.

By Fact 13, we see that for all n,

logN∞(γ,H, n) = O

(
d log

(
4n

γ2

)
log

(
2en

dγ

))
= O

(
d log2

(
n

γ2

))
= O

(
d log2

(
32πn

ε2

))
.

Now let D be the constant of this inequality, so that for all n,

logN∞(γ,H, n) ≤ Dd log2

(
32πn

ε2

)
.

It now suffices to show for suitably large n that

Dd log2
(

32πn
ε2

)
n

≤ ε2

128π
.

Setting a = 32π
ε2

and b = ε2

128πDd , we may assume that a ≥ 1 and log(ab−1) > 1. We can
restate our desired inequality as

log2(an)

bn
≤ 1,

and for some C > 0, we see that if n ≥ Cab−1 log2(ab−1), then

log2(an)

bn
≤
(
logC + log(a2b−1) + log log2(ab−1)

)2
bC(ab−1) log2(ab−1)

≤
(
logC + 4 log(ab−1)

)2
aC log2(ab−1)

≤ (logC/ log(ab−1) + 4)2

C
≤ (logC + 4)2

C
,
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and it is clear that this bound is at most 1 for large C.

We then see that

Cab−1 log2(ab−1) = O

(
d

ε4
log2 d

ε4

)
= O

(
d

ε4
log2 d

ε

)
,

which completes the proof.

Theorem 16 for general real-valued hypothesis classes follows from Theorem 29 using
Fact 10.

4.6 Simpler arguments for agnostic PAC learnability of the distribution
function class

A much simpler argument is available that provides bounds for the distribution class or dual
distribution class, but which does not extend to provide a bound for general measurable
families as in Theorem 16. We explain the idea for the dual distribution class formed over a
concept class. We know that if a concept class is agnostic PAC learnable, then so is its dual
class, where the concepts are given by elements x of the range space. We can then conclude
by routine calculation with dimensions, that for each k, the functions on the parameter
space given by normalized sums of elements x1+...+xk

k is agnostic PAC learnable. But by
a basic result in statistical learning theory, the fact that our original concept class is PAC
learnable means we can approximate each function in the dual distribution class arbitrarily
closely by normalized sums.

Recall that in the special case of a concept class, the result for the dual distribution
class had been proven in prior work (Hu et al., 2022). The simpler proof we present here,
like the analytic proof that goes via the expectation class of a measurable family, improves
on the bound given in prior work. We now explain the idea of this alternative approach.

Fix a concept class C on X indexed by parameter set Y such that C has finite VC
dimension dC and dual VC dimension d∗C .

We let χCx be the dual family of characteristic functions: the family of functions on Y ,
indexed by elements of X, given by χCx(c) = 1 if x ∈ Cc, 0 otherwise.

Thus for any γ, the γ fat-shattering dimension of this family is just the dual VC dimen-
sion d∗C . This is for every 1 > γ > 0, independent of γ.

We let Avgm(v1 . . . vm) be the average of v1 . . . vm, thus Avgm is a function from Rm to
R.

Let χCm be the composed class, indexed by x1 . . . xm ∈ X, with each function taking
c ∈ Y to

Avgm(χCx1(c) . . . χCxm(c))

This fits the composition framework in Theorem 1 of (Attias and Kontorovich, 2024).

Fact 16 Attias and Kontorovich (2024) The γ fat-shattering dimension of the composed
class χCm is bounded by:

25 ·Dγ log2(90 ·Dγ)
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where Dγ here is the sum from 1 to m of the γ fat-shattering dimension of the constituent
class, which in this case is just m · d∗C .

Thus the γ fat-shattering dimension of the class χCm is bounded by:

25 ·m · d∗C · [log(90) + logm+ log d∗C ]
2

Call this J(m, d∗C).
We now want to control the relationship between arbitrary measures and averages.
Fix γ > 0. Recall that DualDistrC is the dual distribution function class for the concept

class C. Suppose the γ fat-shattering dimension of DualDistrC were greater than or equal
to k′. Let nk be large enough that every measure has a γ

2 -approximation of size nk: that is,
there is a set of size nk elements of X such that for any ~c, the percentage of elements in the
set satisfying C~c is within γ

2 of the measure of the set. Then the γ
2 fat-shattering dimension

of the class χCnk would be above k′.
Thus k′ ≤ J(nk, d

∗
C), or restated, the γ fat-shattering dimension of DualDistrC is

bounded by J(nk, d
∗
C).

We can use the following fact, which can be found in standard learning theory texts:
see, e.g. (Li et al., 2001) or for an exposition (Raban, 2023) Theorem 4.2.

Fact 17 There is a constant L, such that if we let nk be such that L ·
√
dC√
nk
≤ γ

2 , then every

measure has a γ
2 -approximation of size nk.

Thus a bound for nk can be taken to be:

L′ · dC
γ2

for another universal constant L′.
Plugging into the bound for J(nk, d

∗
C), and ignoring log factors and universal constants,

we get a bound on the γ fat-shattering dimension for DualDistrC on the order of:

(dC) · d∗C
γ2

Plugging into the sample complexity bound of Fact 4 we get the sample complexity of
agnostic PAC learning DistrC is bounded by:

O

(
1

ε2
·
[
dC · d∗C
( ε9)2

log2

(
1

ε

)
+ log

(
1

δ

)])
Recall from the body of the paper that in (Hu et al., 2022) the dual distribution class over

a concept class was considered, and a sample complexity bound of Õ( 1
ελ+1 ) was obtained,

where Õ indicates that we drop terms that are polylogarithmic in 1
ε ,

1
δ for constant λ. In

contrast, in our bound above, we have a constant in the exponent of ε in the denominator,
rather than the VC-dimension.

We now show that this approach generalizes easily from concept classes to function
classes. That is, we give an alternative proof of the preservation of agnostic PAC learnability,
without going through the expectation class of a measurable family. We do not compute
sample complexity bounds explicitly for this alternative proof, but they are similar to those
given above.
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Theorem 30 Let H be a class of functions over X, indexed by Y . Suppose H is agnostic
PAC learnable (equivalently has finite γ fat-shattering dimension for each γ) then the same
holds for the dual distribution function class (and the distribution function class) of H.

We let H∗ be the dual family. Now this is a class of functions over Y , indexed by X.
Since agnostic PAC learning for real-valued functions is closed under dualization by Fact 7,
for any γ, the γ fat-shattering dimension of this family is also finite.

As before, let Avgm(v1 . . . vm) be the average of v1 . . . vm. Let Avgm(H∗) be the com-
posed class, indexed by x1 . . . xm in Xm taking c to Avgm(hx1(c) . . . hxm(c)).

This again fits the composition framework in Theorem 1 of (Attias and Kontorovich,
2024). From the theorem we have the γ fat-shattering dimension of the composed class is
bounded by:

25 ·m ·Dγ · log2(90 ·Dγ)

where Dγ here is the sum from 1 to m of the γ fat-shattering dimension of the constituent
class, which in this case is just m · FatSHDimγ(H∗).

Thus the γ fat-shattering dimension of the class Avgm(H∗) is bounded by:

25 · (m2) · FatSHDimγ(H∗)[log 90 + logm+ log FatSHDimγ(H∗)]2

Call this J(m,FatSHDimγ(H∗)).
Fix γ, and again let DualDistrH be the dual distribution function class for H. Suppose

the γ fat-shattering dimension of DualDistrH were greater than or equal to k′. This time
let nk be large enough that every distribution has an nk sized γ

2 -approximation, in the sense
that there is an nk sized tuple (x1, . . . , xnk) in X such that for any h ∈ H, the average of h
over the elements of the tuple is within γ

2 of the mean of h - that is,∣∣∣∣∣ 1

nk

nk∑
i=1

h(xi)− E[h]

∣∣∣∣∣ ≤ γ

2
.

Then the γ
2 fat-shattering dimension of the class χφnk would be above k′.

Thus k′ ≤ J(nk,FatSHDimγ(H∗)). Restated: the γ fat-shattering dimension ofDualDistrH
is bounded by J(nk,FatSHDimγ(H∗)).

It suffices to take nk large enough that, for some fixed 0 < δ < 1, GCH
(γ

2 , δ
)
≤ nk, be-

cause if this is the case, the probability that a randomly-selected tuple is a γ
2 -approximation

is at least 1− δ. Thus, fixing δ, we may use

nk = O

(
1

ε2
· FatSHDim ε

9
(H) · log2

(
1

ε

))
.

4.7 The realizable case for PAC learning

The previous subsections showed preservation of agnostic PAC learnability for the distribu-
tion class construction. We now show by contrast that the distribution class constructions
do not preserve PAC learnability in the realizable case.
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Proposition 31 There is a hypothesis class H that is realizable PAC learnable, but the
distribution function class and dual distribution function class based on H are not realizable
PAC learnable.

In the proof, we let H0 be the following slight modification of a class from (Attias et al.,
2023, Example 1). Let X be a set, partitioned into nonempty pieces X0, X1, . . . , with
characteristic functions χXi . Let B ⊆ {0, 1}N consist of all sequences of bits with only
finitely many ones, and let H0 = {hb : b ∈ B}, where if b = (b0, b1, . . . ), then

hb(x) =
3

4

∞∑
i=0

bi · χXi(x) +
1

8

∞∑
i=0

bi · 2−i.

The class H0 has infinite γ fat-shattering dimension for all γ < 1
4 , so is not agnostic

PAC learnable. But it is realizable learnable – in fact, it is learnable from one sample, as
for any x and distinct h, h′ ∈ H0, h(x) 6= h′(x).

We can easily see that the dual distribution class of this class is not realizable PAC
learnable:

Lemma 32 The dual class of H0 is not PAC learnable in the realizable case. Hence the
dual distribution class is not PAC learnable in the realizable case.

Proof A dual class element is given by an x0 in the range space, with any other element
in the same partition Xi as x0 inducing the same function. If we see samples ~b1 . . .~bn, with
value at most 1

4 , we will be able to exclude some partition elements Xi, but we will have
infinitely many Xi possible.

We now show the same thing for the distribution class.

Lemma 33 The distribution class of H0 is not PAC learnable in the realizable case. In
fact, we may simply look at the class on X of “two choice distributions”, consisting of all
hypotheses λ · hb + (1− λ) · hb′ for rational λ ∈ [0, 1] with b, b′ ∈ B.

Proof We prove this by showing that this new class has infinite 1
8 -graph dimension, as

defined in (Attias et al., 2023), which we now review. Fix a natural number n. For our pur-
poses, we only need to know when a class has 1

8 -graph dimension at least n. The definition of
graph dimension states that this holds when we have x0, . . . , xn−1 ∈ X, f1, . . . , fn−1 ∈ [0, 1],
and for each β ∈ {0, 1}n, a hypothesis h′β such that

• h′β(xi) = fi when βi = 0

• |h′β(xi)− fi| > 1
8 when βi = 1.

Note that, unlike with fat-shattering, we have an equality for the zero values of a branch
and an inequality for the one value. Theorem 1 of (Attias et al., 2023) shows that an infinite
1
8 -graph dimension — that is, having such witnesses for each n — implies that the class
is not realizable PAC learnable. To find the required witnesses, let xi ∈ Xi for i < n, let
fi = 1

2 for each i, and let 1n = (1, 1, . . . , 1, 0, 0, . . . ) ∈ {0, 1}N be such that (1n)i = 1 exactly
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when i < n. For each β ∈ {0, 1}n, let β′ ∈ {0, 1}N be the sequence extending β with zeros,
that is, β′i = 0 for i ≥ n. For b ∈ {0, 1}N, let

cb =
1

8

∞∑
i=0

bi · 2−i,

so that for any xi ∈ Xi,

hb(xi) =
3

4
bi + cb.

We note that for all b,

0 ≤ cb ≤
1

8

∞∑
i=0

2−i =
1

4
,

and if there are only finitely many i such that bi = 1, as is the case if b = β′ for some
β ∈ {0, 1}n or b = 1n for some n, then cb is rational.

We claim that there is some λ ∈ [0, 1]∩Q such that letting h′β = λ ·hβ′+(1−λ) ·h1n for
each β, we will obtain the two required properties above. We find that for xi with i < n,
we have, for each β

h′β(xi) = λhβ′(xi) + (1− λ)h1n(xi)

= λ

(
3

4
βi + cβ′

)
+ (1− λ)

(
3

4
+ c1n

)
Again fixing β, we observe that cβ′ <

1
2 <

3
4 + c1n and both cβ′ and c1n are rational. Thus

we can choose λ ∈ [0, 1] ∩Q with

λ
(
cβ′
)

+ (1− λ)

(
3

4
+ c1n

)
=

1

2
.

Then for each i, if βi = 0, we have

h′β(xi) = λ
(
cβ′
)

+ (1− λ)

(
3

4
+ c1n

)
=

1

2
= fi,

and if βi = 1, we have both hβ′(xi), h1n(xi) ≥ 3
4 , so h′β(xi) = λ ·hβ′(xi)+(1−λ) ·h1(xi) ≥ 3

4 .

Thus in particular |h′β(xi)− fi| > 1
8 as required.

We now show that we can “fix” these anomalies by dealing not with a single hypothesis
classes, but a family with reasonable closure properties. If we consider classes closed under
composition with continuous bijections [0, 1] → [0, 1], then there is no difference between
the realizable and agnostic case, and we do have preservation under moving to statistical
classes.

Proposition 34 Let F be a family of hypothesis classes on range space X parametrized by
Y closed under applying continuous bijections: for any H ∈ F , the composition of H with a
continuous bijection f is another class in F . If F contains a hypothesis class with infinite γ
fat-shattering dimension for some γ > 0, there is another hypothesis class in F which is not
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realizable PAC learnable. Thus in particular if every hypothesis class in F is realizable PAC
learnable, then every class in F is agnostic PAC learnable, and thus every distribution class
or dual distribution class arising from a class in F is agnostic PAC learnable and realizable
PAC learnable.

Before beginning the proof of the proposition, we recall a basic result on the fat shatter-
ing dimension. If a class has infinite γ fat-shattering dimension for some γ > 0, this means
we get arbitrary large powersets that we can capture with a γ-gap. The following result
states that realize these counterexamples with a uniform choice of number r < s, where
s− r is bounded below by a function of γ:

Fact 18 (Alon et al. (1997, Thm. 4.2)) For every γ > 0, there is some β > 0 such
that the following holds:

Consider a real-valued hypothesis class H consisting of functions hy for y ranging over
parameter set. Suppose that H has infinite γ fat-shattering dimension. Then for every
natural number d, there are also 0 ≤ r < s ≤ 1 such that s − r ≥ β and there are
x1, . . . , xd ∈ X and (yb : b ∈ {0, 1}d) such that for each b and i, if b(i) = 0, then h(xi; yb) ≤ r,
and if b(i) = 1, then h(xi; yb) ≥ s.

In the literature, this is sometimes phrased by saying that H has “infinite Vβ-dimension”
(where V is for Vapnik).

We now begin the proof of Proposition 34:

Proof Fix a family F of hypothesis classes that is closed under applying continuous bijec-
tions. Assume there is a class H ∈ F that is not agnostic PAC learnable, and we will prove
that there is some H′ ∈ F that is not realizable PAC learnable.

In particular, we assume that H has infinite γ fat-shattering dimension for some γ > 0.
Then by Fact 18, there is some β > 0 such that for every natural number d, there are also
0 ≤ r < s ≤ 1 such that s− r ≥ β and there are x1, . . . , xd ∈ X and (yb : b ∈ {0, 1}d) such
that for each b and i, if b(i) = 0, then Hyb(xi) ≤ r, and if b(i) = 1, then Hyb(xi) ≥ s.

Let f : [0, 1] → [0, 1] be a continuous bijection such that f(r) = 0 and f(s) = 1. Then
consider the hypothesis class H′ = {h′b : b ∈ Y } defined by h′b(x) = f(hb(x)). Because F
is closed under applying continuous bijections, H′ ∈ F , and we will show that H is not
realizable PAC learnable.

To do this, we show that the 1
8 -graph dimension of H′ is infinite. (In fact, the 1−graph

dimension is.) For every d, there are there are x1, . . . , xd ∈ X and (yb : b ∈ {0, 1}d) such
that for each b and i, if b(i) = 0, then h′yb(xi) = 0, and if b(i) = 1, then hyb(xi) = 1.

To show that the 1
8 -graph dimension is greater than d, by the characterization in the

proof of Lemma 33, it now suffices to define f1, . . . , fn−1 ∈ [0, 1] to all be 0, which ensures
that

• h′yb(xi) = fi when bi = 0

• |h′yb(xi)− fi| >
1
8 when bi = 1,

because |h′yb(xi)− fi| = h′yb(xi).
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5 Online learnability of statistical classes

We will now be interested in getting an analog of Theorem 16 for online learning, deriving
bounds on learnability for statistical classes based on dimensions of the base class. As we
did in the agnostic PAC case, we will work via a broader result on measurable families. Re-
call from Fact 6 that agnostic PAc learnability is controlled by the sequential fat-shattering
dimension of a hypothesis class. We will calculate the following regret bound on the ex-
pectation class of a measurable family in terms of a bound on sequential fat-shattering
dimension for the members in the family:

Theorem 35 For any ε, δ > 0, if F is a measurable family of hypothesis classes such that
each class H ∈ F has ε

50 sequential fat-shattering dimension at most d, the minimax regret
of online learning for EF over runs of length n is at most

4 · γ · n+ 12 · (1− γ) ·

√
d · n · log

(
2 · e · n
γ

)
.

If the classes in F are {0, 1}-valued and have Littlestone dimension at most d, the

minimax regret of online learning for EF over runs of length n is at most O
(√

d · n
)

.

Note that we can again apply Proposition 12 to apply this to the distribution class of a
fixed hypothesis class that has finite sequential fat-shattering dimensions. As finiteness of γ
sequential fat-shattering dimension for all γ > 0 is equivalent to sublinear minimax regret
by Fact 6, we have the following corollary:

Corollary 36 If function class H is agnostic online learnable, in the sense of having sub-
linear minimax regret, then so are the distribution class and the dual distribution class.

For the corollary, we use the fact that given any class H of finite γ sequential fat-
shattering dimension d, every element of the the parameter randomized family of H (see
Definition 9) has γ sequential fat-shattering dimension at most d. So its expectation class,
H(CompatParamRV(H)), as in Definition 10, is agnostic online learnable. The distribu-
tion class then embeds into H(CompatParamRV(H)). To deal with the dual distribution
class, we also use the fact that agnostic online learnability is closed under dualization by
Proposition 3.

5.1 Proof of the main theorems on agnostic online learnability of statistical
classes, with quantitative bounds

We now present the proof of Theorem 35.
Recall that to push agnostic PAC learning from a base class into a statistical class, we

went through notions of width. We will do something similar here.
To bound regret for online learning for the expectation class, we will adapt the framework

of sequential Rademacher mean width developed in (Rakhlin et al., 2015a,b). We will define
it here, slightly amending the definition to better match our conventions for mean width.

Definition 37 (Sequential Rademacher mean width) For any n, let {1,−1}<n =
⋃n−1
t=0 {1,−1}t.

For each sequence s = (s1, . . . , sn) ∈ {1,−1}n, let vs ∈ R{1,−1}<n be the vector such that
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for 1 ≤ t ≤ n, (vs)(s1,...,st−1) = st+1, while all other entries are 0. Then let Tn = {vs : s ∈
{1,−1}n}. Recall the definition of mean width from Definition 20. Define the sequential
Rademacher mean width of a set A ⊆ R{1,−1}<n, wSR(A), to be w(A, β) where β is the
uniform distribution on the 2n elements of Tn.

For a hypothesis class H on X, we then define the sequential Rademacher mean width,
RSeqf (n), to be supx̄∈X{1,−1}<n wRSeq(H(x̄, Y ). This definition coincides with the one from

(Rakhlin et al., 2015a) except for the factor of 1
n , although we call it a mean width instead

of a complexity.

Our argument will rely on the following bound, extracted from (Rakhlin et al., 2015b,
Proposition 9). The differences between this fact and the statement in (Rakhlin et al.,
2015b) are due to our slightly different definition and the fact that our function classes take
values in [0, 1] instead of [−1, 1].

Fact 19 (See (Rakhlin et al., 2015b, Proposition 9)) Let H be a function class on
X taking values in [0, 1]. The minimax regret of online learning for H on a run of length n
is at most RSeqH(n), which is in turn at most

inf
γ

4 · γ · n+ 12 ·
√
n·∫ 1

γ

√
FatSHDimSeq

β (H) · log

(
2 · e · n
β

)
dβ.

As with Rademacher mean width, the advantage of this dimension is that we can push
it through expectations.

Theorem 38 Let F = (Hω : ω ∈ Ω) be a measurable family of hypothesis classes on X.
Then

RSeqE[f ](n) ≤ sup
ω
RSeqHω(n).

Proof Recall that the definition of sequential Rademacher mean width is the same as
Rademacher mean width, except with a different probability distribution.

For any n, the distribution β we use on R{−1,1}<n is the uniform distribution on a
particular finite set Tn. Then the sequential Rademacher mean width of a set A ⊆ R{1,−1}<n ,
wSR(A) is w(A, β). For a function f(x, y), the sequential Rademacher mean width was
defined by

RSeqf (n) = sup
x̄∈X{1,−1}<n

wRSeq(H(x̄, Y ).

This allows us to restate this theorem statement as showing that for each n,

sup
x̄∈X{−1,1}<n

w(EF(x̄, Y ), β) ≤ sup
ω

sup
x̄∈X{−1,1}<n

w(Hω(x̄, Y ), β),

and the proof of this is essentially identical to the proof of Theorem 23, but with a new
distribution β.

From this, we can prove a bound on regret for the expectation class in terms of the sequential
fat-shattering dimension, proving the first part of Theorem 35.
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Theorem 39 Let F = (Hω : ω ∈ Ω) be a measurable family of hypothesis classes on X.
The minimax regret of online learning for EF with γ sequential fat-shattering dimension

at most d on a run of length n is at most

4 · γ · n+ 12 · (1− γ) ·

√
d · n · log

(
2 · e · n
γ

)
.

Proof By Theorem 38, any uniform (in ω) bound on RSeqHω(n) also applies to the expec-
tation class, so regret for the expectation class is bounded by

4 · γ · n+ 12 ·
√
n ·
∫ 1

γ

√
FatSHDimS

β (H) · log

(
2 · e · n
β

)
dβ.

Because the function in the integral is decreasing in β, we may bound it näıvely by the
value at γ.

For a {0, 1}-valued concept class, all sequential fat-shattering dimensions coincide with
the Littlestone dimension, and the following improved bound holds:

Fact 20 (Alon et al. (2021, See Lemma 6.4 and Theorem 12.2)) If C is a {0, 1}-
valued concept class with Littlestone dimension at most d, then

RSeqH(n) = O(
√
d · n).

From this, we are able to conclude that the minimax regret for the expectation class of a
family of concept classes with Littlestone dimension bounded by d is also at most O(

√
d · n),

which proves the second part of Theorem 35.

5.2 Preservation of online learnability in moving to statistical classes, via
stability

Above we showed that online learnability is preserved in moving to statistical classes. We
now give a variant without the quantitative bounds, but one which derives from prior
results stated in the context of model theory. We can show that agnostic online learnability
is equivalent to the notion of stability, a notion originating in logic. We can then use prior
results (Ben Yaacov, 2009, 2013) on the preservation of stability in moving to an expectation
class.

Definition 40 A concept class C over X parameterized by Y is stable if there do not exist
arbitrarily large sequences ai, bi : 1 ≤ n with ai ∈ X, bi ∈ Y such that ∀i, j ≤ n ai ∈ Cbj if
and only if i < j.

Roughly speaking stability says that C does not define arbitrarily large linear orders. This
can be phrased as C having finite threshold dimension, as it is called in Ghazi et al. (2021),
where this dimension is the largest size of a finite sequence of pairs (ai, bi) with the above
property.

Recall that for PAC learning of concept classes the critical dimension is VC dimension
or NIP: not having arbitrarily large shattered sets. Stability is the analogous dividing line
for online learning, agnostic or realizable, in the case of concept classes:
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Fact 21 (Chase and Freitag, 2019) A concept class is stable if and only if it is online
learnable.

Here we refer to learnability either in the realizable case or the agnostic case, which are
equivalent for a concept class, as noted in the preliminaries. Both are equivalent to the
class having finite Littlestone dimension by Fact 6.

Thus far we are reviewing a connection between stability and online learnability for
concept classes, which is already known. We now turn to real-valued classes. The notion of
a stable hypothesis class generalizes to this setting, but now requires a real parameter. It
can be defined in terms of either of the following dimensions:

Definition 41 Let H be a hypothesis class on X.

For any γ > 0 and any d, say that H has γ−threshold dimension at least d when there
are a1, . . . , ad ∈ X, h1, . . . , hd ∈ H such that for all i < j,

|hj(ai)− hi(aj)| ≥ γ.

For any r < s and any d, say that H has (r, s)−threshold dimension at least d when
there are a1, . . . , ad ∈ X, h1, . . . , hd ∈ H such that for all i < j, hj(ai) ≤ r and hi(aj) ≥ s.

Call a hypothesis class H γ-stable when it has finite γ-threshold dimension, and call H
(r, s)-stable when it has finite (r, s)-threshold dimension.

These dimensions give two equivalent definitions of overall stability for a hypothesis
class, as shown in the model-theoretic context in (Ben Yaacov and Usvyatsov, 2010, Section
7):

Fact 22 (Ben Yaacov and Usvyatsov (2010, Section 7)) If H is a hypothesis class,
the following are equivalent:

• For every γ > 0, H is γ-stable.

• For every r < s, H has is (r, s)−stable.

We call such a class stable. Roughly speaking stability says that we cannot use gaps in
function values, discretized up to some γ, to define arbitrarily large linear orders.

We will give a slightly more explicit version of this equivalence, using largely the same
proof as in Ben Yaacov and Usvyatsov (2010), but with only finitary Ramsey theory, in
order to define stability uniformly over a family of hypothesis classes.

Definition 42 If F is a family of hypothesis classes on X parameterized by Y , and γ >
0, say that F is uniformly γ-stable when there is some d such that every H ∈ F has
γ−threshold dimension at most d.

For r < s, say that F is uniformly (r, s)-stable when there is some d such that every
H ∈ F has (r, s)−threshold dimension at most d.

These two notions are closely related:
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Lemma 43 For any γ > 0 and d, if H has γ-threshold dimension less than d, then for all
r, s with r + γ ≤ s, H has (r, s)-threshold dimension less than d.

For any 0 < δ < γ and d, there is d′ such that if H has (r, s)-threshold dimension less
than d whenever r + δ ≤ s, then H has γ-threshold dimension less than d′.

Proof It is straightforward to see that ifH has (r, s)-threshold dimension at least d, then the
same a1, . . . , ad ∈ X, h1, . . . , hd ∈ H that recognize this show that H has (s− r)-threshold
dimension at least d.

Now fix 0 < δ < γ and d. Let n = d 1
γ−δ e. Then by Ramsey’s theorem, there is some

d′ such that any coloring of the complete graph on d′ vertices with 2n colors admits a
monochromatic set of size d.

We now show that if H has γ-threshold dimension at least d′, then there are some r < s
with r + δ ≤ s such that H has (r, s)-threshold dimension at least d.

By our assumption, there are a1, . . . , ad′ ∈ X, h1, . . . , hd′ ∈ H such that for all i < j,
|hj(ai)− hi(aj)| ≥ γ.

Thus for each i < j, because 1
n ≤ γ − δ, there is some 0 ≤ k < n such that either

hj(ai) ≤ k
n ,−hi(aj) ≥

k
n + δ, or hi(aj) ≤ k

n ,−hj(ai) ≥
k
n + δ. This gives 2n possible cases,

so we may color the complete graph on d′ with 2n colors such that every edge (i, j) with
i < j given a particular color falls into the same case. We may thus find a monochromatic
subset I ⊆ {1, . . . , d′} of size d. Let k be the k appearing in the case corresponding to
the color of that monochromatic subset, and then let r = k

n , s = k
n + δ. Then either for

all i < j in I, hj(ai) ≤ r,−hi(aj) ≥ s, in which case we are done, or for all i < j in I,
hi(aj) ≤ r,−hj(ai) ≥ s, in which case we only need to reverse the order of our witnesses.

Thus if we universally quantify over all the parameters, these two notions are the same:

Corollary 44 If F is a family of hypothesis classes on X parameterized by Y , then the
following are equivalent:

• For every γ > 0, F is uniformly γ-stable.

• For every r < s, F is uniformly (r, s)-stable.

This lets us define two equivalent properties of a class F - if either holds, we call F uniformly
stable.

The main result in this subsection shows that the connection between stability and
online learnability extends to real-valued classes:

Theorem 45 A hypothesis class H is stable if and only if for every γ > 0, the sequential
fat-shattering dimension FatSHDimSeq

γ (H) is finite, and a family F of hypothesis classes is
uniformly stable if and only if for every γ > 0, there is some d such that for each H ∈ F ,
the sequential fat-shattering dimension FatSHDimSeq

γ (H) is at most d.

Specifically, the following implications hold:

• If H has γ sequential fat-shattering dimension less than d, and r+ γ ≤ s, then H has
(r, s)-threshold dimension less than 2d+1 − 1.
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• If 0 < δ < γ
2 , then for every d there is some d′ such that if H has δ-threshold dimension

less than d, then H has γ sequential fat-shattering dimension less than d′.

The interest in the above theorem is that stability has already been shown to be pre-
served in moving to from a measurable family to its expectation class:

Fact 23 (Ben Yaacov and Keisler (2009); Ben Yaacov (2013)) If a measurable fam-
ily F of hypothesis classes on X parameterized by Y is uniformly stable, then the expectation
class EF is also stable.

The result above is phrased very differently in the cited source, in terms of continuous
logic. In Appendix D we explain how to get from the statement in the sources to this
version.

Thus we can combine Theorem 45, Fact 23, and the characterization of agnostic online
learnability via sequential fat-shattering in Fact 6 to give another proof that preservation
of agnostic online learning in moving to statistical classes:

Corollary 46 For any measurable family F of hypothesis classes on X parameterized by
Y , the expectation class EF is agnostic online learnable if and only if for every γ > 0,
there is some d such that for each H in the range of F , H has γ sequential fat-shattering
dimension at most d.

In particular, if a hypothesis class H is agnostic online learnable, so are its distribution
class and dual distribution class.

We now turn to proving Theorem 45:
Proof Assume that H has (r, s)-threshold dimension at least 2d+1 − 1, with γ = s− r. We
will show that H γ fat-shatters a binary tree of depth d. First, we linearly order the set
{−1, 1}≤d in a variation of lexicographical fashion, so that for any string t1 of length k with
k < d, and any string t2 strictly extending t1, if (t2)k = −1 then t1 < t2, and if (t2)k = 1
then t2 > t1. By the assumption that H has (r, s)-threshold dimension at least 2d+1 − 1,
as the set {−1, 1}≤d has size 2d+1 − 1, there are ((at, ht) : t ∈ {−1, 1}≤d) such that for all
i < j in this order, hj(ai) ≤ r and hi(aj) ≥ s.

We claim we can shatter the tree T defined by sending each sequence E ∈ {−1, 1}<d to
aE . For every E ∈ {−1, 1}d, let E<t = (E(0), . . . , E(t− 1)). We consider hE , and see that
for all 0 ≤ t < d, if E(t) = −1, then E < E<t, so hE(aE<t) ≤ r, while if E(t) = 1, we have
E > E<t and hE(aE<t) ≥ s. As s − r ≥ γ, this tree is γ-shattered. Thus we have finished
the proof of the first dimension implication in Theorem 45.

To prove the other direction, we fix 0 < δ < γ
2 . We will show by induction on d that

if k > (γ − 2δ)−1 and H γ-shatters a binary tree T in X of depth kd+1−1
k−1 , then there are

x1, . . . , xd ∈ X and h1, . . . , hd ∈ H such that for all i < j, |hi(xj)− hj(xi)| ≥ δ.
The base case is d = 1. We just need that X and H are nonempty, which is satisfied by

the existence of any shattered tree.
For the induction step, we will need a Ramsey-theoretic fact about partitions on the

nodes of a binary tree, and to state it, we need to define a subtree:

Definition 47 (Subtree) Let T : {−1, 1}<d → X be a binary tree in X of depth d. If
x, y are both in the image of T , say that y is a left descendant of x when x = T (E) and
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y = T (E′), with E′ extending (E0, . . . , Et,−1). If instead E′ extends (E0, . . . , Et, 1), we call
y a right descendant of x.

Then a subtree of T of depth d′ ≤ d is a map T ′ : {−1, 1}<d′ → X such that if y is a
left/right descendant of x in the image of T ′, it is also a left/right descendant of x in the
image of T .

The Ramsey-theoretic fact is:

Fact 24 (Alon et al. (2019, Lemma 16)) If p, q are positive integers, T : {−1, 1}<p+q−1 →
X is a binary tree in X of depth p+ q − 1, and the elements of X are partitioned into two
sets, blue and red, then either there is a blue subtree of T with depth p, or a red subtree of
depth q.

By applying this repeatedly, we find a more useful version for our purposes:

Corollary 48 (Tree Ramsey) If d1, . . . , dk are positive integers, T : {−1, 1}<d1+···+dn−k+1 →
X is a binary tree in X of depth d1 + · · ·+dn−k+ 1, and the elements of X are partitioned
into k sets X1, . . . , Xk, then there is some i such that the set Xi contains a subtree of T of
depth di.

Returning to the inductive step, assume that d is such that we have the inductive
invariant for d: if H is a class on X that γ-shatters a binary tree of depth kd+1−1

k−1 , then
there are x1, . . . , xd ∈ X and h1, . . . , hd ∈ H such that for all i < j, |hi(xj)− hj(xi)| ≥ δ.

Now assume the hypothesis of the invariant for d+ 1: H is a class on X that γ-shatters
a binary tree T of depth kd+2−1

k−1 . In the text below, by the width of a real interval with
endpoints a < b, we mean b − a. We pick some h ∈ H, partition [0, 1] into k intervals
I1, . . . , Ik each of width at most γ − 2δ, and then partition X into sets X1, . . . , Xk where if

x ∈ Xi, then h(x) ∈ Ii. Then by Corollary 48, as k
(
kd+1−1
k−1 + 1

)
−k+1 = kd+2−1

k−1 , the depth

of T , some Xa contains the set of values decorating a subtree T ′ of T of depth kd+1−1
k−1 + 1.

Let x′ be the root of T ′. By the shattering hypothesis, there are r and s with r+γ ≤ s such
that the tree of left descendants of x′ in T ′ is γ-shattered by the set of h′ with h′(x′) ≤ r,
and the tree of right descendants is γ-shattered by all h′ with h′(x′) ≥ s. Because Ia has
width at most γ − 2δ, either the interval [0, r] or the interval [s, 1] has distance to Ia at
least δ. Assume without loss of generality that it is [0, r]. The tree of left descendants of

x′ in T ′ has depth kd+1−1
k−1 , and is γ-shattered by the set of h′ with h′(x′) ≤ r. Thus by the

inductive hypothesis, there are left descendants x1, . . . , xd of x′ in T ′ and h1, . . . , hd ∈ H
with hi(x

′) ≤ r for each i such that for each i < j ≤ d, |hi(xj) − hj(xi)| ≥ δ. We now
let xd+1 = x′ and hd+1 = h, and observe that for i ≤ d, hi(x

′) ≤ r while h(xi) ∈ Ia, so
|hi(x′)− h(xi)| ≥ δ.

Thus we have completed the proof of the other direction of Theorem 45.

.

5.3 Realizable Online Learning for statistical classes

We now turn to preservation of realizable online learning for statistical classes. As with
realizable PAC learning, our results will be negative.
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We start by reviewing the relationship between realizable and agnostic online learning.
Recall that for PAC learning, agnostic learnability is weaker than realizable learnability, and
strictly weaker for real-valued function classes: realizable learning is a special case where
the optimal hypothesis gives zero error. For realizable learning, the situation is different,
since we have a stronger hypothesis on the target concept, but also a stronger requirement
for our learning algorithm: a uniform bound on regret. As with PAC learnability, there is no
difference in the boundary line for learnability between realizable and agnostic for concept
classes. For real-valued classes, there is a difference between agnostic and realizable learning,
just as in the PAC case.

In terms of dimensions, while agnostic online learning is characterized via the sequential
fat-shattering dimension mentioned previously realizable online learning has recently been
characterized using online dimension (Attias et al., 2023).

Definition 49 [Online dimension] A hypothesis class H on a set X has online dimension
greater than D when there is some d, some X-valued binary tree T : {−1, 1}<d → X, a
real-valued binary tree τ : {−1, 1}<d → [0, 1], and a H-labelling of each branch in such a
tree, Λ : {−1, 1}d → H, such that

• for every two branches b0, b1 ∈ {−1, 1}d, if the last node at which they agree is t, then

|Λ(b0)(T (t))− Λ(b1)(T (t))| ≥ τ(t)

• for every branch b ∈ {−1, 1}d, whose restrictions to previous levels are t0, . . . , td−1,
we have

∑d−1
i=0 τ(ti) > D.

Finiteness of online dimensions characterizes realizable online learnability.

Fact 25 (Attias et al. (2023, Theorem 4)) Let H be a hypothesis class on a set X.
Then H has bounded regret for realizable online learning if and only if its online dimension
is finite. If D is greater than the online dimension of H, there is an algorithm for realizable
online learning with regret at most D.

Online dimension has a (one way) relationship to fat-shattering of binary trees:

Lemma 50 Let H be a hypothesis class on a set X, let γ > 0, and d ∈ N. If H γ-fat-
shatters a tree of depth d, then the online dimension of H is at least γ · d.

Proof Suppose T is the γ-fat-shattered tree. Then fix a binary tree s of depth d in R,
and label each branch b ∈ {−1, 1}d with some hb ∈ H such that for all nodes t of the tree
{−1, 1}d, b−1, b1 are branches extending t, and bi extends t concatenated with i for i = ±1,
then

hb−1(T (t)) ≤ s(t)− γ

2
,

while
hb1(T (t)) ≥ s(t) +

γ

2
.

We now show that for any ε > 0, the online dimension of H is greater than d(γ− ε). We
let τ : {−1, 1}<d → [0, 1] be the real-valued labelled binary tree with constant value γ − ε,
and let Λ label each branch b with hb. Then for any two branches, we may without loss of
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generality call the branches b−1, b1, let t be the last node at which they agree, and assume
that bi extends t concatenated with i for i = ±1. Then

|hb1(T (t))− hb−1(T (t))| ≥∣∣∣(s(t) +
γ

2

)
−
(
s(t)− γ

2

)∣∣∣ = γ > γ − ε.

Thus T, τ,Λ satisfy the requirements to show that the online dimension of H is greater
than

min
b∈{−1,1}d

d−1∑
t=0

τ(ti),

where ti is the restriction of b to level i. As τ takes a constant value γ − ε, the online
dimension is greater than d(γ − ε).

From the lemma we infer an important consequence, saying that the containment be-
tween realizable and agnostic goes the opposite way in online learning as compared to PAC
learning:

Corollary 51 If H is realizable online learnable, it has some finite online dimension D,
and thus for any γ > 0, H has sequential γ-fat-shattering dimension at most D

γ .
Because this gives a finite bound for all γ, we see that:
realizable online learnability implies agnostic online learnability, even for real-valued

function classes.

We are now ready to show that in the case of real-valued functions, moving from a base
class to statistical classes does not preserve realizable online learnability. In fact, this will
follow from lack of closure under dualization:

Proposition 52 There is a real-valued hypothesis class H that is realizable online learnable,
but its dual class is not realizable online learnable. Thus the dual distribution class based
on H is not online learnable.

Before proving the proposition, we note a pathology for realizable online learning which
will introduce the example classes that are relevant to the proof of the proposition. We
show that the notion of learnability is less robust, in the sense that it is not preserved under
composition with increasing homeomorphisms of [0, 1].

Theorem 53 There is a hypothesis class H on a set X that has finite γ sequential fat-
shattering dimension for all γ > 0, but has infinite online dimension. In fact, there are
classes H,H′ on the same set X, both indexed by a set Y , such that both have finite γ
sequential fat-shattering dimension for all γ > 0, H has infinite online dimension, H′ has
finite online dimension, and there is an increasing homeomorphism f : [0, 1] → [0, 1] such
that f ◦ H = H′, as functions X × Y → [0, 1].

In terms of learning, this means that both classes are agnostic online learnable, but only
H′ is realizable online learnable. In particular, this show that the dividing lines for these
notions of learnability are different.
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We proceed to the proof of the theorem.
Proof Let X be the infinite binary tree X =

⋃∞
t=0{0, 1}t. Fix a decreasing sequence

Γ = γ0, γ1, . . . of positive reals to be determined, with limd γd = 0. We define HΓ, a
hypothesis class indexed by the infinite branches {0, 1}N of that infinite binary tree.

Given an infinite branch b, and x ∈ X, the hypothesis hb(x) = 0 when x is not an
initial segment of b. If x is an initial segment of b, let d be its length. Then we let
hb(x) = bd · γd. Thus for any x ∈ {0, 1}d and branches b, b′, the difference |hb(x) − hb′(x)|
is either 0 or γd, with the latter only occurring when at least one of b, b′ extends x. In
particular, if b1, b2, b3 ∈ {0, 1}N are pairwise distinct, then there must be some pair i 6= j
with i, j ∈ {1, 2, 3} with |hbi(x)− hbj (x)| = 0, as otherwise, we must have (bi)d 6= (bj)d for
each i 6= j, but (b1)d, (b2)d, (b3)d ∈ {0, 1}, so all three bits cannot be pairwise distinct.

For any γ > 0, we will calculate that HΓ has finite γ sequential fat-shattering dimension.
Specifically, if HΓ γ fat-shatters a binary tree, it is clear that the nodes of this tree must all
be nodes of X of length at most d, where d is the largest number such that γd ≥ γ. Thus
the depth of the γ fat-shattered tree must be at most d, so the γ sequential fat-shattering
dimension is at most d. In particular, regardless of the rate at which γi goes to zero, the
resulting class is agnostic online learnable.

We now characterize when the class is realizable online learnable, which will depend on
the rate at which the parameters γi go to 0.

Note that the tree {0, 1}<d ⊆ X is γd fat-shattered: for each maximal branch b of the
tree, we label the branch with a hypothesis corresponding to any infinite branch extending
b. Thus by Lemma 50, HΓ will have online dimension at least d · γd. If the sequence
(d · γd : d ∈ N) is unbounded, then the online dimension is infinite, and there is no uniform
bound for regret for realizable online learning.

Now we will show that if Γ is chosen such that the sum
∑∞

i=0 2iγi converges, then
the online dimension of HΓ is at most

∑∞
i=0 2iγi, and in particular, HΓ has finite online

dimension. Assume for contradiction that the online dimension is greater than
∑∞

i=0 2iγi.
For this to be true, it must be witnessed by some d, an X-valued tree T of depth d, a tree
τ of real-valued errors, and an assignment of elements from H to each branch of the tree.

We claim that if s, t ∈ {−1, 1}<d are such that s is a strict initial substring of t and
T (s) = T (t), then either τ(s) = 0 or τ(t) = 0. Let b1, b2 ∈ {−1, 1}d be two branches
extending t, while b3 extends s in such a way that its last common node with b1, b2 is s. As
noted earlier, there must be two of these three branches such that i 6= j but Λ(bi)(T (s)) =
Λ(bj)(T (s)). If Λ(b1)(T (s)) = Λ(b2)(T (s)), then as T (s) = T (t),

τ(t) ≤ |Λ(b1)(T (t))− Λ(b2)(T (t))| = 0.

Otherwise, for some i ∈ {1, 2}, we have Λ(bi)(T (s)) = Λ(b3)(T (s)), so

τ(s) ≤ |Λ(bi)(T (s))− Λ(b3)(T (s))| = 0.

Now consider a branch of {−1, 1}<d consisting of nodes t0, . . . , td−1. We can bound the
sum of the weights of that branch by grouping the indices i by the value of T (ti):

d−1∑
i=0

τ(ti) ≤
∑
x∈X

 ∑
0≤i<d−1:T (ti)=x

τ(ti)

 .
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For each x ∈ X, there is at most one i such that T (ti) = x and τ(ti) > 0, so only one i can

contribute to the sum
∑

x∈X

(∑
0≤i<d−1:T (ti)=x

τ(ti)
)

. If x has length ` and i is such that

T (ti) = x, then τ(ti) ≤ γ`, so

∑
x∈X

 ∑
0≤i<d−1:T (ti)=x

τ(ti)

 ≤ γ`.
As there are only 2` elements of X with length `, the online dimension D of H is bounded
by

D <
d−1∑
i=0

τ(ti) ≤
∑
x∈X

 ∑
0≤i<d−1:T (ti)=x

τ(ti)

 ≤ ∞∑
`=0

2`γ`.

By assumption, this latter sum converges, so the online dimension is finite.

We now claim that if HΓ is constructed from the sequence Γ = γ1, γ2, . . . while HΓ′ is
constructed in the same way from the sequence Γ′ = γ′1, γ

′
2, . . . , then there is an increasing

homeomorphism f : [0, 1]→ [0, 1] such that f ◦HΓ = HΓ′ . To do this, define f(1) = 1, and
for each d, define f(γd) = γ′d We can then extend this to a piecewise linear definition, with
countably many pieces, on (0, 1], where limx→0 f(x) = 0, so defining f(0) = 0 will maintain
continuity.

We now see that by choosing Γ = γ1, γ2, . . . so that limd d · γd = ∞ and choosing
Γ′ = γ′1, γ

′
2, . . . so that

∑∞
i=1 γ

′
i converges, we find HΓ with infinite online dimension and

HΓ′ with finite online dimension such that f ◦ HΓ = HΓ′ .

Using the same family of examples, we now prove Proposition 52:

Proof Let Γ = γi : i > 0 be a sequence such that the i·γi is unbounded. Let HΓ be the class
from Theorem 53. Recall that range points are prefixes p (finite sequences). Hypotheses
are parameterized by infinite sequences s and the value of a hypothesis hs on a prefix p is
either zero or 1

γn
for n the length of p. Then, as proven in Theorem 53 Hγ is not online

learnable in the realizable case.

Let Dγ be the dual class. So points are now ω-sequences s, hypotheses are prefixes p,
and the value of a hypothesis hp at a sequence s is 0 if s does not extend p and is 1

γn
if

s does extend p, where again n is the length of prefix p. We claim that Dγ is realizable
online learnable. Consider the definition of online learnability in terms of a game between
learner and adversary. Adversary is playing range points for Dγ – that is, infinite sequences
s. And at a move for learner with previous adversary range points s1 . . . sk, learner knows
the values v1 . . . vk−1 of a Dγ-consistent hypothesis for s1 . . . sk−1. Note that if adversary
ever reveals a value vi that is non-zero, learner will know the hypothesis, since there is a
unique prefix of si that would give such a value. Thus adversary should always reveal value
zero. Thus learner has a strategy that will achieve bounded loss: play zero until a non-zero
value appears.

To finish the proof, we note that Hγ is the dual of Dγ .
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5.4 An Alternate Approach to Realizable Online Learning

Thus far we have shown that realizable online learning is not preserved under moving to
statistical classes. We have indicated that this is related to another pathology, that online
learnability is not preserved under applying continuous mappings. We will now look at
using this intuition to “fix” the pathologies of realizable online learning. We will do this by
changing the definition, applying alternate loss functions which do not sum the cumulative
losses, but rather discretize them.

Recall that a run of a learning algorithm for T rounds yields a sequence (z1, y1, y
′
1), . . . , (zT , yT , y

′
T ),

where (zi, yi) are the moves by the adversary, and y′i are the moves by the learner. Ear-
lier, the loss was defined as

∑
i≤T |y′i − yi|. Here we let the loss be

∑
i≤T `(|y′i − yi|), for

certain ` : [0, 1] → [0,∞) nondecreasing. We then define regret in terms of this new loss
function `, and the remainder of the setup remains unchanged, including the restriction on
the adversary in the realizable case.

Definition 54 (Online learnability for a general loss function) Given a loss func-
tion ` : [0, 1] → [0,∞), say that a hypothesis class H is `-online learnable in the agnostic
case when there is a learning algorithm whose minimax regret with loss function ` against
any adversary is sublinear in T .

Say that a hypothesis class H is `-online learnable in the realizable case when there
is a learning algorithm whose minimax regret with loss function ` against any realizable
adversary is bounded, uniform in T .

The lower the loss function, the easier it is to learn:

Lemma 55 Let C > 0, and suppose `1, `2 : [0, 1]→ [0, 1] are loss functions with C`1(x) ≤
`2(x) for all x ∈ [0, 1].

Then in either the agnostic or realizable case, if a hypothesis class H is `2-online learn-
able, then it is `1-online learnable.

Proof The same learning algorithm will suffice. On any given run of the algorithm, the
regret with `1 as the loss function will be at most the regret with `2 as the loss function:

C
∑
i≤T

`1(|y′i − yi|) ≤
∑
i≤T

`2(|y′i − yi|),

so regret with loss function `1 will satisfy the same upper bound required of regret with loss
function `2, up to the fixed factor C.

We now define the loss functions we will focus on:

Definition 56 (ε-truncated loss functions) Given ε > 0, define `ε, Lε : [0, 1] → [0,∞)
by

`ε(x) = max(x− ε, 0)

Lε(x) =

{
0 if x < ε

1 if x ≥ ε.
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The usual loss function we just denote by `id (this is the identity, so `id(x) = x). Using
these other loss functions make it easier for a class to be online learnable:

Lemma 57 In either the agnostic or realizable case, online learnability implies Lε-online
learnability which implies `ε-online learnability.

Proof Online learnability is equivalent to the standard notion `id-online learnability, and
we see that for any x ∈ [0, 1],

εLε(x) ≤ `id(x)

`ε(x) ≤ Lε(x),

so the result follows by Lemma 55.

The reason for studying these loss functions is that when we require online learnability
with respect to any `ε, the gap between agnostic and realizable online learnability vanishes.
The proof below will apply prior characterizations of agnostic online learnability, which are
given in terms of notions from model theory.

Theorem 58 For a hypothesis class H, the following are equivalent:

• H is online learnable in the agnostic case
• ∀ε > 0, H is Lε-online learnable in the agnostic case
• ∀ε > 0, H is `ε-online learnable in the agnostic case
• ∀ε > 0, H is Lε-online learnable in the realizable case
• ∀ε > 0, H is `ε-online learnable in the realizable case

As a corollary, we see that these properties of H, being equivalent to online learnability
in the agnostic case, are also preserved under moving to statistical classes:

Corollary 59 If for every ε > 0, H is `ε-online learnable in the realizable case, or for
every ε > 0, H is Lε-online learnable in the realizable case, then the same holds for both the
distribution class and the dual distribution class.

We now work towards the proof of Theorem 58.

To handle realizable online learnability with a loss function, we need to expand online
dimension to include a loss function. In fact, (Attias et al., 2023) defined it for an even
more broad notion of a loss function, but this version will suffice for our purposes here:

Definition 60 [Online dimension for a general loss function] In the context of a loss func-
tion ` : [0, 1] → [0, 1], a hypothesis class H on a set X has online dimension greater
than D when there is some d, some X-valued binary tree T : {−1, 1}<d → X, a real-
valued binary tree τ : {−1, 1}<d → [0, 1], and a H-labelling of each branch in such a tree,
Λ : {−1, 1}d → H, such that

• for every two branches b0, b1 ∈ {−1, 1}d, if the last node at which they agree is t, then

` (|Λ(b0)(T (t))− Λ(b1)(T (t))|) ≥ τ(t)
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• for every branch b ∈ {−1, 1}d, whose restrictions to previous levels are t0, . . . , td−1,
we have

∑d−1
i=0 τ(ti) > D.

This dimension still characterizes realizable online learnability, as in the full version of
(Attias et al., 2023, Theorem 4):

Fact 26 (Attias et al. (2023, Theorem 4)) Let H be a hypothesis class on a set X.
Then when ` : [0, 1] → [0, 1] is a loss function, H has bounded regret for realizable online
learning if and only if Onl`(H) <∞.

Specifically, if Onl`(H) < D, then there is an algorithm for realizable online learning
with regret at most D with respect to loss function `. Conversely, if Onl`(H) > D, then for
any algorithm for realizable online learning, the minimax regret with respect to loss function
` is at least D

2 .

Lemma 61 For any non-decreasing loss function ` : [0, 1]→ [0, 1], if a hypothesis class H
on X γ sequentially fat-shatters a binary tree in X of depth d, then Onl`(H) ≥ d · `(γ), and
also the minimax regret of a d-round online learner in the agnostic case with loss function
` is at least 1

3d · `(γ).

Proof We first show that Onl`(H) ≥ d · `(γ). This is only a slight modification of Lemma
50.

As in that proof, suppose T is the γ-fat-shattered tree. Let the binary tree s : {−1, 1}<d →
R and the branch labelling Λ which labels each branch b ∈ {−1, 1} with hb be as in that
proof. Then as in that proof, for any two branches, we may refer to those branches without
loss of generality as b−1, b1, where t is the last node at which they agree, and assume that bi
extends t concatenated with i for i = ±1. The essential property of sequential fat-shattering
is that then

|hb1(T (t))− hb−1(T (t))| ≥ γ,

so we may choose the real labelling τ : {−1, 1}<d → [0, 1] given by τ(t) = `(γ)− ε, and then
T, τ,Λ satisfy the requirements to show that the online dimension of H is greater than

min
b∈{−1,1}d

d−1∑
t=0

τ(ti),

where ti is the restriction of b to level i. As τ takes a constant value `(γ) − ε, the online
dimension is greater than d(`(γ)− ε).

The loss functions Lε were chosen so that online dimension would capture sequential
fat-shattering dimension:

Lemma 62 For any hypothesis class H and any ε > 0, if OnlLε(H) is infinite, then H is
not agnostic online learnable.

Proof Here we will use the connection of agnostic online learnability with stability, which
was utilized earlier in Section 5.2.

Specifically we will show that for 0 < δ < γ
2 , H is not δ-stable, which suffices by Theorem

45.
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Because Lε is {0, 1}-valued, if D is an integer and OnlLε ≥ D, then there is a tree
T : {−1, 1}<d → X, a {0, 1}-valued binary tree τ : {−1, 1}<d → {0, 1}, and an H-labelling
of each branch in the tree, Λ : {−1, 1}d → H, such that

• for every two branches b0, b1 ∈ {−1, 1}d, if the last node at which they agree is t, and
|Λ(b0)(T (t))− Λ(b1)(T (t))| ≥ ε, then τ(t) = 1.

• for every branch b ∈ {−1, 1}d whose restrictions to previous levels are t0, . . . , td−1, at
least D of these nodes have τ(ti) = 1.

We will show that there must also be a binary tree of depth D that is ε fat-shattered
by H. To do this recursively. It will helpful below for the reader recall the definitions of
descendants and subtrees from Definition 47.

We claim that for any integer D, if every branch of a finite-depth {0, 1}-valued binary
tree t : {−1, 1}<d → {0, 1} has at least D nodes labelled 1, then there is a depth-D subtree
of this binary tree with all nodes labelled 1. That is, there is a function ι : {−1, 1}<D →
{−1, 1}<d, increasing in the tree order, such that t ◦ ι(v) = 1 for all nodes v.

We construct the subtree recursively, inducting on D. This is trivial for D = 0. Suppose
that this is true for D, and we now consider a finite-depth {0, 1}-valued binary tree t :
{−1, 1}<d → {0, 1} where every branch has at least D + 1 nodes labelled 1. Let v be a
node of minimal length with τ(v) = 1. We now consider the tree of all left descendants of
v. Suppose this tree has depth d′. Then the labelling t on this subtree induces a labelling
t′ : {−1, 1}<d′ → {0, 1}, given by concatenating each node w ∈ {−1, 1}<d′ with v and −1 to
form a left descendant w′ of v, and then setting t′(w) = t(w′). Every branch b ∈ {−1, 1}d′

of this smaller tree corresponds uniquely to a branch b′ ∈ {−1, 1}d of the original tree which
extends v to the left. To see this, let v = (v0, . . . , v`), and let b = (b0, . . . , bd′−1) - we then
define this new branch to be b′ = (v0, . . . , v`,−1, b0, . . . , bd′−1). We then see that of the
nodes leading up to b′, at least D + 1 are labelled 1 by t. Let S be the set of such nodes.
Because the elements of S lie on the same branch, they are comparable. As this branch
contains v, they are thus either substrings of v, or descendants of v. By the minimality
assumption, the only substring of v which can be labelled 1 by t is v, so the remaining ≥ D
elements of S are descendants of v. As these lie on the branch b′, they are left descendants.
These correspond to nodes of the smaller tree {−1, 1}<d′ , which lie on the branch b, and
are labelled 1 by t′. Thus every branch b′ contains at least D elements labelled 1 by t′, so
the induction hypothesis applies. There is thus a subtree of {−1, 1}<d′ of depth D where
all nodes are labelled 1 by t′ - this is given by a map ι−1 : {−1, 1}<D → {−1, 1}<d′ such
that for all nodes w ∈ {−1, 1}<D, concatenating v with −1 and ι−1(w) gives a node w′ with
t(w′) = 1. The same must be true, by symmetry, of the right descendants, and these two
trees, together with v, form a subtree of depth D + 1, with all nodes labelled 1.

We now return to our trees T, τ , and our branch labelling Λ. By our claim, there is
a subtree of {−1, 1}<d of depth D where every element is labelled 1 by τ . We can thus
choose an increasing (in the tree partial order) function ι : {−1, 1}<D → {−1, 1}<d with
τ ◦ ι(v) = 1 for all v. For every branch b ∈ {1,−1}D of {1,−1}<D, choose a branch
b′ ∈ {−1, 1}d extending ι(v) for all nodes v comprising b′. Label b with Λ′(b) = Λ(b′).

Now for any two branches b−1, b1 of {−1, 1}D, if t is the last node at which they agree,
we can assume that bi extends t concatenated with i for i = ±1. As above, for i = ±1, let
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b′i ∈ {−1, 1}d be the chosen branch corresponding to bi in the larger tree. Because we have
only chosen nodes labelled with 1, we have

Lε(|Λ′(b−1)(T ◦ ι(t))− Λ′(b1)(T ◦ ι(t))|) = Lε(|Λ(b′−1)(T ◦ ι(t))− Λ(b′1)(T ◦ ι(t))|)
≥ τ ◦ ι(t)
= 1,

so in particular, |Λ′(b−1)(T ◦ ι(t))− Λ′(b1)(T ◦ ι(t))| ≥ ε.
We will connect this to stability using an argument that is a slight modification of the

proof of one direction of Theorem 45. Fix 0 < δ < ε
2 and k > (ε − 2δ)−1. We wish to

show that for all d, there are x1, . . . , xd ∈ X and h1, . . . , hd ∈ H such that for all i < j,
|hi(xj)− hj(xi)| ≥ δ.

First, we observe that in the first part of this proof, we have shown that for all d, there
exists an X-valued binary tree T of depth kd+1−1

k−1 , and a labelling Λ of the branches of T
with elements of H such that for any branches b−1, b1, if t is the last node at which they
agree, then |Λ(b−1)(T (t))−Λ(b1)(T (t))| ≥ ε. We say that such a tree T is ε spread-shattered
by H, and that Λ witnesses spread-shattering of T .

To finish the proof, we show by induction on d that if H′ is a class on X that ε spread-
shatters an X-valued binary tree T of depth kd+1−1

k−1 , then there are x1, . . . , xd ∈ X and
h1, . . . , hd ∈ H′ such that for all i < j, |hi(xj) − hj(xi)| ≥ δ. As this holds for H and any
d, the result follows.

Consider the base case, d = 1. We simply need that X and H′ are nonempty, which is
satisfied by the existence of any shattered tree.

Now assume that d is such that we have the inductive invariant for d: if H′ is a class on
X that ε spreads-shatters a binary tree of depth kd+1−1

k−1 , then there are x1, . . . , xd ∈ X and
h1, . . . , hd ∈ H′ such that for all i < j, |hi(xj)− hj(xi)| ≥ δ.

Also assume the hypothesis of the invariant for d+ 1: H′ is a class on X that ε spread-
shatters a binary tree T of depth kd+2−1

k−1 . As before, by the width of a real interval with
endpoints a < b, we mean b − a. We pick some h ∈ H′, partition [0, 1] into k intervals
I1, . . . , Ik each of width at most ε−2δ, and then partition X into sets X1, . . . , Xk where if x ∈
Xi, then h(x) ∈ Ii. Then by our Ramsey result for trees, Corollary 48, as k

(
kd+1−1
k−1 + 1

)
−

k + 1 = kd+2−1
k−1 , the depth of T , some Xa contains the set of values decorating a subtree T ′

of T of depth kd+1−1
k−1 + 1. Let x′ be the root of T ′.

Let HL ⊆ H′ consist of all hypotheses Λ(b) where b is a branch of T extending x′ to
the left, and let HR ⊆ H′ consist of all hypotheses Λ(b) where b is a branch of T extend-
ing x′ to the right. By the spread-shattering hypothesis, if hL ∈ HL and hR ∈ HR, then
|hL(x′)−hR(x′)| ≥ ε. Because Ia has width at most ε−2δ, either the set {hL(x′) : hL ∈ HL}
or the set {hL(x′) : hL ∈ HL} has distance to Ia at least δ. Assume without loss of gen-
erality that it is {hL(x′) : hL ∈ HL}. The tree of left descendants of x′ in T ′ has depth
kd+1−1
k−1 , and is ε-shattered by HL. Thus by the inductive hypothesis, there are left descen-

dants x1, . . . , xd of x′ in T ′ and h1, . . . , hd ∈ HL for each i such that for each i < j ≤ d,
|hi(xj) − hj(xi)| ≥ δ. We now let xd+1 = x′ and hd+1 = h, and observe that for i ≤ d,
hi ∈ H while h(xi) ∈ Ia, so |hi(x′)− h(xi)| ≥ δ.
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We are now ready to prove Theorem 58:

Proof Many of these implications follow from Lemma 57. To show all of the agnostic case
conditions are equivalent, it suffices to show that if for every ε > 0, H is `ε-online learnable,
H is online learnable.

We show this through the contrapositive. If H is not online learnable in the agnostic
case, then there is some ε > 0 such that H sequentially 2ε fat-shatters a tree of depth d
for every d. By Lemma 61, the regret of agnostic `ε-online learning in d rounds is at least
d`ε(2ε) = dε, so this is not sublinear.

To show that the realizable case conditions are equivalent to agnostic online learnability,
we first observe that by Lemma 62, if H is online learnable in the agnostic case, then for
any ε > 0, H is Lε-online learnable in the realizable case.

Using Lemma 57 once more, it suffices to show that if for every ε > 0, H is `ε-online
learnable in the realizable case, H is online learnable in the agnostic case. The contraposi-
tive of this follows from the other part of Lemma 61.

6 Related Work

As noted earlier, what we refer to as the “dual distribution class” is from (Hu et al., 2022),
where it is defined only for concept classes. The basic result of (Hu et al., 2022) is that
agnostic PAC learnability of a base concept class implies agnostic PAC learnability of the
dual distribution class, with accompanying sample complexity bounds that are asymptoti-
cally looser than ours. The extension of dual distribution classes to base classes consisting
of real-valued values, as well as the notion of the distribution class, is new to our work.

We have presented our arguments without relying on logical notions. But our work is
inspired by work on learnability of hypothesis classes coming from logical formulas, so we
say more about the connection here. Given a structure M and a logical formula φ(x1 . . . xk),
one can look at the k-tuples from the domain of M that satisfy φ: this is a definable set of
tuples from M. Given a first-order formula φ(x1 . . . xj ; y1 . . . yk) in which the free variables
are partitioned, we get a family of sets of j-tuples, by varying ~y over all k-tuples in M. Thus
each φ(~x; ~y) gives a concept class with range space the j-tuples from the domain of M, and
parameter space the k-tuples from the structure. For example the family of rectangles in
the reals and the family of intervals in the reals are definable families. A partitioned formula
is said to be NIP if the corresponding concept class has finite VC dimension.

Model theorists have identified a number of structures where the concept class arising
from each partitioned formula has finite VC dimension (or equivalently, is agnostic PAC
learnable): these are called NIP structures: see, for example, (Simon, 2015). As discussed
in our paper, agnostic online learnability corresponds to a hypothesis class being stable: see
Definition 40. A partitioned formula φ(~x; ~y) in a structure M is called stable exactly when
the corresponding concept class is stable in the sense of Definition 40. The study of stable
formulas has been developed over many decades by model theorists, and many structures
have been identified in which every partitioned formula is stable: see, for example (Shelah,
1990). There is an analogous notion of “continuous logic”, in which formulas are real-valued,
and in continuous logic partitioned formulas give real-valued hypothesis classes. The results
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in works such as (Ben Yaacov, 2009; Ben Yaacov and Keisler, 2009) are phrased in terms
of NIP and stability of continuous logic structures.

The notion of measurable family and its expectation class was introduced in (Ben Yaa-
cov, 2009). It relates to a transformation that is similar to the one we perform here: moving
from a logical structure to its “randomization”, another structure where the elements are
random variables. The notion of randomization originates in (Keisler, 1999), and was devel-
oped further in (Ben Yaacov, 2009; Keisler, 1999; Ben Yaacov and Keisler, 2009). Many of
our results on both agnostic PAC learning and agnostic online learning of statistical classes
can be seen as refinements of results in these works. Our refinements include: translating
these results outside of their original context of hypothesis classes coming from logic to gen-
eral hypothesis classes, and presenting sample complexity bounds. In the agnostic online
learning setting we generalize results proven in prior work only for concept classes to the
setting of real-valued hypothesis classes.

Model-theoretic characterizations of which partitioned formulas are learnable in other
learning models (e.g. Private PAC learning) are provided in (Alon et al., 2019).

7 Conclusions

We investigated a mapping that takes a “base” hypothesis class, consisting of either Boolean
or real-valued functions, to other classes based on probability distributions over either the
range space or the parameter space of the class. We connected this to a theory of ran-
domized families of classes, stemming from work in model theory: there we move from a
random hypothesis class to its expectation class. We have proven that these transforma-
tions preserve agnostic PAC learnability and agnostic online learnability, refining results
from both learning of database queries (Hu et al., 2022) and the model theory (Ben Yaacov
and Keisler, 2009). In addition to providing a linkage between these communities, our re-
sults provide improved bounds. For realizable learning, we have provided counterexamples
to preservation.

Our motivation concerns distribution classes, but we obtain our positive results by
embedding into a strictly more general setting, the expectation class of a measurable family.
This setting allows correlation between range elements and parameters. We are currently
exploring how to exploit this generality.

We leave open the question of whether realizable online learnability of a base class
implies realizable online learnability of the distribution class. For the dual distribution
class, we showed failure of preservation in Proposition 52.
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Itäı Ben Yaacov and Alexander Usvyatsov. Continuous first order logic and local stability.
Transactions of the American Mathematical Society, 362(10):5213–5259, 2010.

Hunter Chase and James Freitag. Model theory and machine learning. The Bulletin of
Symbolic Logic, 25(3):319–332, 2019.

David Heaver Fremlin. Measure theory. Torres Fremlin, 2002. URL http://www.essex.

ac.uk/maths/staff/fremlin/int.htm.

Badih Ghazi, Noah Golowich, Ravi Kumar, and Pasin Manurangsi. Near-tight closure
bounds for the littlestone and threshold dimensions. In Algorithmic learning theory,
pages 686–696. PMLR, 2021.

Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi, Sudeepa Roy, and
Jun Yang. Selectivity functions of range queries are learnable. In SIGMOD, 2022.

Michael J. Kearns and Robert E. Schapire. Efficient distribution-free learning of probabilis-
tic concepts. JCSS, 48(3):464–497, 1994.

H. Jerome Keisler. Randomizing a model. Advances in Mathematics, 143(1):124–158, 1999.

Pieter Kleer and Hans Simon. Primal and dual combinatorial dimensions. Discrete Applied
Mathematics, 327:185–196, 2023.

44

http://www.essex.ac.uk/maths/staff/fremlin/int.htm
http://www.essex.ac.uk/maths/staff/fremlin/int.htm


From learnable objects to learnable random objects

Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample complexity
of learning. Journal of Computer and System Sciences, 62(3):516–527, 2001.

Lothar Sebastian Krapp and Laura Wirth. Measurability in the Fundamental Theorem of
Statistical Learning, 2025. https://arxiv.org/abs/2410.10243.

Daniel Raban. The Glivenko-Cantelli Theorem and Introduction to VC Dimension, 2023.
URL https://pillowmath.github.io.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and
uniform martingale laws of large numbers. Probability theory and related fields, 161:
111–153, 2015a.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning via sequential
complexities. J. Mach. Learn. Res., 16(1):155–186, 2015b.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory
to Algorithms. Cambridge University Press, 2014.

Saharon Shelah. Classification theory and the number of non-isomorphic models. Elsevier,
1990.

Pierre Simon. A Guide to NIP Theories. Cambridge University Press, 2015.

L. P. D. van den Dries. Tame Topology and O-minimal Structures. Cambridge University
Press, 1998.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

45

https://pillowmath.github.io


Anderson and Benedikt

Appendix A. Agnostic online learnabilty and duality: Proof of
Proposition 3

Recall Proposition 3:

A function class is agnostic online learnable exactly when its dual class is.

Although this is surely well known, we include a proof for completeness. We can use
the characterization in terms of stability of a hypothesis class in Theorem 45: The theorem
shows that a hypothesis class H on X parameterized by Y is online learnable if and only if:

For all γ > 0, there is some d such that there are no a1, . . . , ad ∈ X, b1, . . . , bd ∈ Y , such
that for all i < j,

|hbj (ai)− hbi(aj)| ≥ γ.

Clearly, if the roles of range and parameter space are swapped, the same thing holds.

Appendix B. Justifying and generalizing Example 3.2

Recall that in the body of the paper we presented Example 3.2, an example of a hypothesis
class of functions. We claimed that this was agnostic PAC learnable. This can be argued di-
rectly via computation of fat-shattering dimensions. Here we give a more general argument,
deriving from logic.

Consider the real numbers with operations addition, multiplication, and the inequality:
this is a real-closed order field. We recall what it means for a set of tuples in the reals to
be first-order definable over this vocabulary The terms of first-order logic are built up from
real constants and variables by applying the functios addition and multiplication: that is,
they are polynomials with real coefficients. The atomic formulas are inequalities between
terms. The formulas of first-order logic are built up from atomic formulas via the Boolean
operations ∧,∨,¬ and the quantifiers ∃x, ∀x.

A partitioned formula φ(x1 . . . xj ;w1 . . . w`) is a formula where the free variables are
partitioned into two subsets, ~x and ~y. Such a formula is associated with a family of subsets
of Rj , indexed by R`, in the obvious way. We can similarly talk about a formula with a
partition of the free variables into three parts.

A 3-partitioned formula of the form φ(x1 . . . xj ; y1 . . . yk;w1 . . . w`) is a definable family
of functions if for every ~w and ~x, there is exactly one ~y that makes the formula true. Such
a formula is associated with a family of functions from Rj to Rk, indexed by R`.

Note that the class of Example 3.2 is of this form.

The following proposition follows from the fact that the real ordered field is an “NIP
structure”:

Proposition 63 Every definable family of functions over the real ordered field has finite γ
fat-shattering dimension for each γ > 0, and is thus agnostic PAC learnable.

Although this is also probably well known, we sketch a proof:

Proof To use the terminology within model theory, the real-ordered field is o-minimal, and
for every o-minimal structure over the reals, it is shown in van den Dries (1998) that every
definable family family of subsets in an o-minimal structure has finite VC dimension. Thus

46



From learnable objects to learnable random objects

if we have φ(~x; ~w), with φ a formula over the real field, the hypothesis class consisting of
functions h~w, the characteristic function φ(~x; ~w) has finite γ fat-shattering dimension for
each γ. Thus the same holds for finite sums (with fixed number of summands) of such
characteristic functions. A definable family of functions, like the family in Example 3.2, can
be approximated within any tolerance in the sup norm, uniformly in the parameters ~w by
finite sums of characteristic functions. Thus the proposition holds.

Appendix C. Measurability issues

In the body of this paper, there are two important steps where our arguments ignored
some issues related to measurability assumptions, and two points at which we cite other
work without clarifying the measurability assumptions. We spell out these steps and the
assumptions here.

Let us first discuss the agnostic PAC case. We have given two arguments for preserva-
tion of agnostic PAC learnability to statistical classes in the body of the paper. Both of
them proceed by proving bounds on certain combinatorial dimensions, like γ fat-shattering.
Our story was that this implies finite GC-dimension, which in turn implies agnostic PAC
learnability, a standard chain of deductions. However, the argument from combinatorial
bounds to GC-dimension bounds in prior work requires some measurability assumptions,
which are often not spelled out in detail in the literature: see, e.g. Lothar Sebastian Krapp
and Laura Wirth (2025) for an overview of these issues.

We will not provide exact measurability conditions. But we will show that countability of
the parameter space is sufficient for our sample complexity arguments about the distribution
class, and similarly countability of the range space for the arguments about the sample
complexity of the dual distribution class.

Recall that a key point of the argument is to bound the GC dimensions of the expectation
class of a measurable family. We will argue that:

• for this argument it suffices that the parameter space is separable: informally, this
means we can approximate the behaviour by looking at a countable subset of the
parameter space.

• when we revisit the embedding of the distribution class as a measurable family from
Section 3.2, it produces a separable measurable family as long as the parameter space
of the base class is countable.

Similarly, in agnostic online case, our proof of Theorem 35 requires additional assump-
tions, including those required by results cited from Rakhlin et al. (2015b). We will see
that these arguments also work in the context of a separable parameter space.

C.1 The Necessary Measurability Assumptions

Recall Lemma 21:

Let (Ω,Σ, µ) be a probability space, and let F = (Hω : ω ∈ Ω) be a measurable family
of hypothesis classes on X.
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Fix n, x̄ ∈ Xn, and a Borel probability measure β on Rn. Then

w(EF(x̄, Y ), β) ≤ Eµ[w(Hω(x̄, Y ), β)].

The first issue is that for Eµ[w(Hω(x̄, Y ),~b)] in the statement of Lemma 21 to be well-
defined, we need the measurable family F to satisfy a stronger measurability assumption:

Definition 64 Assume that (Ω,Σ, µ) is a probability space. Say that a measurable family
F = (Hω : ω ∈ Ω) of hypothesis classes on X parameterized by Y is strongly measurable
when for each x̄ ∈ Xn and ~b ∈ Rn, the function ω 7→ w(Hω(x̄, Y ),~b) is measurable.

Another place measurability is required is defining Glivenko-Cantelli dimensions. The
Glivenko-Cantelli dimensions of a hypothesis class H are defined in terms of the measures
of the sets {

(x1, ..., xm) | ∃h ∈ H,
∣∣∣∣ 1

m
· (Σm

i=1h(xi))−
∫
h(u)dD(u)

∣∣∣∣ > ε

}
for ε > 0,m, and a distribution D, which we could rewrite as the union⋃

h∈H

{
(x1, ..., xm) |

∣∣∣∣ 1

m
· (Σm

i=1h(xi))−
∫
h(u)dD(u)

∣∣∣∣ > ε

}
,

which in general need not be measurable, although they are if for each m, the following
function is measurable:

(x1, . . . , xm) 7→ sup
h∈H

∣∣∣∣ 1

m
· (Σm

i=1h(xi))−
∫
h(u)dD(u)

∣∣∣∣ .
In summary, when we refer to the Glivenko-Cantelli dimensions of H, we implicitly

assume that H has the following property:

Definition 65 (well-defined GC dimensions) Say a hypothesis class H on X has well-
defined Glivenko-Cantelli dimensions if for all ε > 0, all m, and all distributions D on
measure space on X induced by H, the set{

(x1, ..., xm) | ∃h ∈ H,
∣∣∣∣ 1

m
· (Σm

i=1h(xi))−
∫
h(u)dD(u)

∣∣∣∣ > ε

}
is measurable with respect to the measure space on X induced by H.

If H has well-defined Glivenko-Cantelli dimensions, then the bounds in Fact 10 on the
learnability of H hold.

The two results we cited without measurability assumptions are Facts 11 and 19:
Fact 11 is used in the proof of Theorem 16 to deduce bounds on Glivenko-Cantelli

dimensions from Rademacher mean width. The result this rephrases, (Wainwright, 2019,
Theorem 4.10), assumes measurability in the form of well-defined Glivenko-Cantelli di-
mensions. It is observed at the beginning of (Wainwright, 2019, Section 4.4) that this
measurability assumption holds in the case of a parameter space which is either countable
or, in an appropriate metric, separable.
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Fact 19 is used in the proof of Theorem 35 to deduce online learnability from sequential
Rademacher mean width. It is cited from Rakhlin et al. (2015b), where X and Y are
assumed to be separable metric spaces, with H : X × Y → [0, 1] continuous (or at least,
lower-semicontinuous). In the case where X and Y are countable, this can be satisfied
trivially by giving each the discrete metric (d(a, b) = 1 when a 6= b). We will show that this
assumption is also satisfied when X is countable and Y is a space of random variables on a
countable set.

It is worth noting that Theorem 30 and Corollary 46 provide alternate proofs that
agnostic PAC and online learning respectively are preserved under passing to the distri-
bution class. The proofs of both of these theorems simply show that finite (sequential)
fat-shattering dimension is preserved, from which one can deduce that learnability is as
well. However, this latter deduction is once again subject to measurability constraints.
In the PAC case, well-defined Glivenko-Cantelli dimensionssuffice, and in the online case,
separability suffices.

C.2 Countable Parameter Spaces

We now check that if Y is countable, then these measurability assumptions are satisfied.

Lemma 66 If F is a measurable family of hypothesis classes on X parameterized by Y ,
and Y is countable, then F is strongly measurable.

Proof Assume Y is countable, and fix x̄ = (x1, . . . , xn) ∈ Xn, ~b = (b1, . . . , bn) ∈ Rn.
For any ω ∈ Ω, we can view Hω as a function Hω : X × Y → [0, 1]. Then expanding
definitionally,

w(Hω(x̄, Y ),~b) = sup
y∈Y

n∑
i=1

Hω(xi, y)bi.

The assumption that F is measurable means that for each x ∈ X, y ∈ Y , the func-
tion ω 7→ Hω(x, y) is measurable, from which we see that for each y ∈ Y , the function
ω 7→

∑n
i=1Hω(xi, y)bi is measurable. A countable supremum of measurable functions is

measurable, so ω 7→ w(Hω(x̄, Y ),~b) is measurable, making F a strongly measurable class.

It is also clear that if H is a class parameterized by a countable set Y , the Glivenko-
Cantelli dimensions are well-defined, because the sets in question are countable unions.

We can also conclude that if F is a measurable family of hypothesis classes parameterized
by countable Y , then Theorem 16 holds. Because a countable set is also separable in any
metric, the measurability requirements for Fact 19 are satisfied, so Theorem 35 holds.

C.3 From countable parameter spaces to the parameters of random variable
classes

When we analyze a class H under the assumption that its parameter set Y is count-
able, we eventually have to consider the class H(CompatParamRV(H)), parameterized by
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CompatParamRV(H), which need not be countable. However, we will show that it is sep-
arable in a suitable metric, and show that this suffices for the rest of our measurability
requirements.

Lemma 67 If Y is countable, then the set CompatParamRV(H) is separable with the met-
ric where

d(Y1, Y2) =
∑
y∈Y
|P[Y1 = y]− P[Y2 = y]| .

Proof Let A be the set of all Y ∗ ∈ CompatParamRV(H) such that for all y ∈ Y, P[Y ∗ =
y] ∈ Q, for all but finitely many y ∈ Y , P[Y ∗ = y] = 0. This set is countable, and to show
that it is dense, we will show that for all Y ′ ∈ CompatParamRV(H), and ε > 0, there is
some Yε ∈ A such that d(Y ′, Yε) ≤ ε.

As
∑

y∈Y P[Y ′ = y] = 1, there is some finite set S ⊆ Y with
∑

y∈S P[Y ′ = y] ≥ 1 − ε
3 .

Then by density of the rational numbers, we can find nonnegative rational numbers (ry :
y ∈ S) such that

∑
y∈S ry = 1, and

∑
y∈S |P[Y ′ = y]− ry| ≤ 2ε

3 . We then define Yε so that
if y ∈ S, then P[Yε = y] = ry, and otherwise, P[Yε = y] = 0.

Then d(Y ′, Yε) =
∑

y∈S
∑

y∈S |P[Y ′ = y]− ry|+
∑

y∈Y \S |P[Y ′ = y]− 0| ≤ 2ε
3 + ε

3 = ε.

We now check that separability in this particular metric suffices to imply well-defined
Glivenko-Cantelli dimension, justifying the application of Fact 11 in the proof of Theorem
16.

Theorem 68 If Y is countable, then for any δ, ε > 0, GCε,δ (H(CompatParamRV(H))) is
well-defined.

Proof It suffices to show that for all m, the function

(x1, . . . , xm) 7→ sup
Y ′∈CompatParamRV(H)

∣∣∣∣ 1

m
· (Σm

i=1Eµ[hY ′(xi)])−
∫

Eµ[hY ′(u)]dD(u)

∣∣∣∣ .
is measurable. To do this, let A be a countable dense set of CompatParamRV(H) in the
metric from Lemma 67, and we will show that the functions fY ′ defined by

fY ′(x1, . . . , xm) =

∣∣∣∣ 1

m
· (Σm

i=1Eµ[hY ′(xi)])−
∫

Eµ[hY ′(u)]dD(u)

∣∣∣∣
are themselves measurable, and that {fY ′ : Y ′ ∈ A} is dense in {fY ′ : Y ′ ∈ CompatParamRV(H)},
in the sup-metric, so any fY ′ is a uniform limit of elements of {fY ′ : Y ′ ∈ A}, from which
we conclude that

sup
Y ′∈CompatParamRV(H)

fY ′ = sup
Y ′∈A

fY ′ ,

and the latter countable supremum is measurable.
First, let Y ′ ∈ CompatParamRV(H). The function fY ′ is measurable, because it is the

absolute value of a sum of measurable functions, as x 7→ Eµ[hY ′(x)] is the uniform limit of
linear combinations of measurable functions hy(x) for y ∈ Y ′.
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Then we show that {fY ′ : Y ′ ∈ A} is dense in {fY ′ : Y ′ ∈ CompatParamRV(H)}, in the
sup-metric, by showing that if Y1, Y2 ∈ CompatParamRV(H), then supx̄ |fY1(x̄)− fY2(x̄)| ≤
2d(Y1, Y2).

We see that for every x ∈ X,

Eµ[|hY1(x)− hY2(x)|] ≤
∑
y∈Y

hy(x) |P[Y1 = y]− P[Y1 = y]|

≤
∑
y∈Y
|P[Y1 = y]− P[Y1 = y]|

= d(Y1, Y2),

so for every x̄ ∈ Xm,

fY1(x̄)− fY2(x̄)

=

∣∣∣∣ 1

m
· (Σm

i=1Eµ[hY1(xi)])−
∫

Eµ[hY1(u)]dD(u)

∣∣∣∣− ∣∣∣∣ 1

m
· (Σm

i=1Eµ[hY2(xi)])−
∫

Eµ[hY2(u)]dD(u)

∣∣∣∣
≤ 1

m
· (Σm

i=1Eµ [|hY1(xi)− hY2(xi)|]) +

∫
Eµ [|hY1(u)− hY2(u)|] dD(u)

≤ 2d(Y1, Y2).

Furthermore, to show that the assumptions of Fact 19 are satisfied, we check the fol-
lowing:

Lemma 69 Suppose H is a hypothesis class with range space X and parameter space Y ,
which are both countable. Then H(CompatParamRV(H)) : X × CompatParamRV(H) →
[0, 1] is continuous, where X has the discrete metric and CompatParamRV(H) has the above
separable metric.

Proof Because X has the discrete metric, it suffices to show that for each x ∈ X, the
function

fx : Y ′ 7→ (H(CompatParamRV(H)))Y ′(x)

is continuous.
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In fact, we will see that it is 1-Lipschitz. Suppose Y1, Y2 ∈ CompatParamRV(H)). Then

|fx(Y1)− fx(Y2)| =

∣∣∣∣∣∣
∑
y∈Y

P[Y1 = y]hy(x)−
∑
y∈Y

P[Y1 = y]hy(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Y

(P[Y1 = y]− P[Y1 = y])hy(x)

∣∣∣∣∣∣
≤
∑
y∈Y
|P[Y1 = y]− P[Y1 = y]|hy(x)

≤
∑
y∈Y
|P[Y1 = y]− P[Y1 = y]|

= d(Y1, Y2).

C.4 Without Countability Assumptions

If we place no countability or separability assumptions on Y , then we can still prove results
which transfer from a base class to a statistical class, but which only deal with combinatorial
dimensions, rather than learnability. Here would be one transfer result for the agnostic PAC
case:

Theorem 70 If F is a measurable family of hypothesis classes with uniformly bounded
γ (sequential) fat-shattering dimension for all γ > 0, then EF has finite γ (sequential)
fat-shattering dimension for all γ > 0.

Proof We prove this first for fat-shattering dimension, and then consider the sequential
version.

If the class EF has infinite γ fat-shattering dimension for some γ > 0, this is witnessed
by a countable subset Y ′ ⊆ Y . If we restrict the parameters of every class in F to Y ′,
the resulting measurable family F ′ is strongly measurable. Thus EF ′ having infinite γ
fat-shattering dimension implies, by Theorems 23 and and the connection between finite
fat-shattering dimensions and Rademacher mean width, that there must be some δ > 0 for
which the classes H ∈ F ′ have unbounded fat-shattering dimension, and the same applies
to F .

For the sequential version, the argument is the same, but citing Theorem 38.

However, Theorems 16 and 35 are still subject to the measurability assumptions of Facts
11 and 19 respectively.

Appendix D. More detail on Fact 23

Recall that in the body we stated Fact 23, about passing from a uniformly stable family
to stability of its expectation class. We cited Ben Yaacov and Keisler (2009); Ben Yaacov
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(2013) for this, and mention that the language used in these works is quite different. We
now explain how to translate from the setting of these works to Fact 23.

Our statement is that if a measurable family F of hypothesis classes on X parameterized
by Y is uniformly stable, then the expectation class EF is also stable. The statements in
Ben Yaacov and Keisler (2009); Ben Yaacov (2013) show that stability, as a property of a
formula in a metric structure of continuous logic, is preserved under a construction known
as “randomization”. For the definitions of continuous logic and metric structure, see Ben
Yaacov (2013); Ben Yaacov and Keisler (2009) and references therein.

Given a measurable family F as above, we will construct such a metric structure, and
check that stability of EF follows from stability of a corresponding formula in the random-
ization structure.

In order to state this properly, we need to explain what it means for a formula to
be stable in a metric structure or theory of continuous logic. We define this in terms of
hypothesis classes to match the rest of this paper, but the resulting definition matches (Ben
Yaacov and Usvyatsov, 2010, Definition 7.1).

Definition 71 In any metric structure M, given a formula φ(x; y) of continuous logic,
let HM,φ be the class on the x-sort of M parameterized by the y-sort of M and given by
(HM,φ)y(x) = φ(x, y).

We say that φ(x; y) is stable in M when HM,φ is. We say that φ(x; y) is stable in a
theory T when it is stable in every model M � T .

We begin by recalling some definitions and results related to randomization from Ben
Yaacov (2013). The special case of concept classes is worked out in Ben Yaacov and Keisler
(2009).

Given a theory T of continuous logic in the language L, there is a language LR, known as
the randomization of L, and an LR-theory TR of continuous logic, known as the randomiza-
tion of T , such that for every L-formula φ(x̄) in the language of T , there is a corresponding
LR-formula E[φ(x̄)] in the language of TR.

We defer to Ben Yaacov (2013) for the exact construction of LR and TR. Below we
summarize their most relevant properties:

Definition 72 (See Ben Yaacov (2013, Definitions 3.4, 3.23)) Let (Ω,Σ, µ) be a prob-
ability space, and let (Mω : ω ∈ Ω) be a family of metric structures in a relational language
of continuous logic. We call (Mω : ω ∈ Ω) a random family of structures when for all
relation symbols R(x̄) in this language, and tuples ā of random variables a : ω →

⋃
ωMω

where a(ω) ∈Mω, the function ω 7→ R(ā(ω)) is measurable.

Fact 27 (Ben Yaacov (2013, Corollary 3.24)) Let T be a theory of continuous logic,
and let (Mω : ω ∈ Ω) be a random family of models of T . Then there is a metric LR-
structure R � TR, consisting of the random variables a : ω →

⋃
ωMω where a(ω) ∈ Mω,

where for every formula φ(x̄),

(E[φ(ā)])R = Eµ
[
φ(ā(ω)))Mω

]
.

Fact 28 (Ben Yaacov (2013, Theorem 4.9)) If φ(x̄) is stable in T , then E[φ(x̄)] is sta-
ble in TR.
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Recall that F = (Hω : ω ∈ Ω) consists of hypothesis classes Hω on X parameterized
by Y , where (Ω,Σ, µ) is an atomless probability space with respect to which each function
ω 7→ Hω(x, y) with x ∈ X, y ∈ Y is measurable.

We now construct a measurable family of structures based on Hω. Given ω ∈ Ω, let
Mω be a metric structure with two sorts: X,Y . To each sort we assign the discrete metric
(d(x, y) = 1 when x 6= y), so all functions on these sorts will be uniformly continuous.
Then we make this a structure in a language with one relation symbol, φ(x, y), where x
is a variable of sort X and y is a variable of sort Y . We interpret this symbol in Mω by
φ(x, y) = (Hω)y(x).

Now let T be the shared theory of all the structures Mω.

Lemma 73 The partitioned formula φ(x; y) is stable in the theory T .

Proof This means that for everyM � T , the class HM,φ on the X-sort ofM parameterized
by the Y -sort of M and given by (HM,φ)y(x) = φ(x, y) is stable.

Note that the class HMω ,φ is just Hω.
Because T is the common theory of the structures Mω, and for each r < s, the (r, s)-

threshold dimensions of the classes HMω ,φ are uniformly bounded, the same bound is im-
plied by some condition proven by the theory T , so this same bound also holds for any other
M � T , so φ(x; y) is stable in T .

This implies also that E[φ(x, y)] is stable in TR. This allows us to construct stable
hypothesis classes from models of TR. We see that there is a model R � TR consisting
of random variables where for each pair a, b of random variables in the X-sort and Y -sort
respectively,

(E[φ(a, b)])R = Eµ
[
φ(a(ω), b(ω)))Mω

]
.

We now claim that the hypothesis class EF embeds into the class defined by E[φ(x, y)]
in this structure, and is thus stable. To see this, note that for every x ∈ X, y ∈ Y , the
constant random variables a, b taking values x, y respectively are elements of the appropriate
sorts of R, by the construction in Ben Yaacov (2013). Thus for these elements of R,

(E[φ(a, b)])R = Eµ
[
φ(x, y)Mω

]
= Eµ [(Hω)y(x)] = EFy(x).
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