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The Lazy Caterer’s Problem

Figure: The maximum number of pieces that n slices cut a circle into
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Vapnik-Chervonenkis Theory

Let X be an infinite set, and let F be a set of subsets of X .

Definition

Let π∗F (n) be the maximum number of subsets of A ⊂ X
that can be expressed as S ∩ A for some S ∈ F , where
|A| = n.

The dual vc-dimension of F , VC∗(F), is the largest d for
which π∗F (d) = 2d .

The dual vc-density of F , vc∗F (F), is the infimum of all d
for which π∗F (n) = O(nd).
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Vapnik-Chervonenkis Theory: Catering Example

Let X be the circle, and F be the set of half-planes.
Then π∗F (n) is the number of pieces from the Lazy Caterer’s
Problem.

n 0 1 2 3 4 5

π(n) 1 2 4 7 11 16

This means VC(F) = 2.
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Vapnik-Chervonenkis Theory: Sauer-Shelah

Theorem (Sauer-Shelah)

For any F with VC∗(F) = d ,

π∗F (n) ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
= O(nd)

for all n ∈ N. Thus vc∗(F) ≤ VC(F).

Example

In the Lazy Caterer’s Problem, we get exactly

π∗F (n) =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
.
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Fix a language L and an L-structure M.

The dual VC-dimension of a formula φ(x ; y) is the dual
VC-dimension of the family

Fϕ = {ϕ(M; b̄) : b̄ ∈ M |y |}.
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NIP

Fact

All formulas φ(x ; y) with |x | = d in the ordered field R have
vc-density d .

Definition

If all definable families in a structure have finite
vc-density/dimension, we call the structure NIP.
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NIP Structures
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Definability

We can define each∗ half-plane as

{(x1, x2) ∈ R2 : b1x1 + b2x2 ≤ 1}

for some (b1, b2) ∈ R2, so the half-planes are parametrized by
points in the plane.

Fact

The set F of all half-planes is a definable family in the structure
〈R; 0, 1,+, ·, <〉 (the real ordered field). It is defined by

ϕ(x1, x2; y1, y2) ⇐⇒ y1x1 + y2x2 ≤ 1.

So is the set of circles, defined by

ϕ(x1, x2; y1, y2, y3) ⇐⇒ (x1 − y1)2 + (x2 − y2)2 = y2
3 .
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Definability

Definition

Let M be an L-structure.

Let ϕ(x ; y) be a formula made up of symbols from L,
where x and y could be multiple variables. Then for
b̄ ∈ M |y |, the set

ϕ(M; b̄) := {ā ∈ M |x | : ϕ(ā, b̄) is true}

is called definable.

The set
Fϕ = {ϕ(M; b̄) : b̄ ∈ M |y |}

is called a definable family.



Distal
Combinatorics

at Purdue

Aaron
Anderson

VC Theory

Incidences and
Cuttings

Distality

Regularity

Continuous
Logic

Table of Contents

1 VC Theory

2 Incidences and Cuttings

3 Distality

4 Regularity

5 Continuous Logic



Distal
Combinatorics

at Purdue

Aaron
Anderson

VC Theory

Incidences and
Cuttings

Distality

Regularity

Continuous
Logic

Incidences

Many combinatorics problems boil down to something like this:
Let P be a set of m points in Rd , let Q be a set of n lines,
circles, or curves from some other definable family.
What’s the asymptotic growth in m and n of the size of the set
of incidences:

I (P,Q) = {(p, q) : p ∈ q}?

I (P,Q) can be thought of as the edges of the (bipartite)
incidence graph.
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Incidence Theorems

Theorem (Kövari-Sós-Túran)

If G is a bipartite graph with parts P and Q, containing no
copy of Ks,t , then the number of edges satisfies

|E (P,Q)| = O(mn1−1/t + n)

Theorem (Szemerédi-Trotter)

If P is a set of m points and Q a set of n lines in R2, then

|I (P,Q)| = O(m2/3n2/3 + m + n)
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The Cutting Lemma

Definition

Say that a set A is crossed by another set B if A∩B and A \B
are both nonempty.

Theorem

For every set Q of n lines in R2, and for every 1 < r < n, there
exists a partition of the plane into O(r2) “triangular” pieces
with each piece only crossed by n/r of the half-planes.



Distal
Combinatorics

at Purdue

Aaron
Anderson

VC Theory

Incidences and
Cuttings

Distality

Regularity

Continuous
Logic

Szemerédi-Trotter Proof Sketch

Proof.

If m2 ≤ n, it works. Otherwise, let r = n1/3

m2/3 .

Apply the cutting lemma to get O(r2) barely-intersecting
pieces that are each crossed by only n/r lines.

Use Kövari-Sós-Túran to count incidences on each piece,
using the reduced number of points and reduced number
of lines.

Add up the number of incidences in each piece.
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Distal Cell Decompositions

What if we want to count incidences on curves from some
other definable family?

One technique is a better cutting lemma. To get it, use a
distal cell decomposition.
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Distal Cell Decompositions

Definition

A distal cell decomposition T for a formula ϕ(x ; y) is a
nice-and-definable method for taking a finite set S ⊂ M |y | of
parameters, and outputting a set of cells, T (S).
They satisfy the following axioms:

The union of the cells is M |x |.

Each cell is not crossed by ϕ(M; b̄) for any b̄ ∈ S .

The cells are uniformly definable. Roughly, there are some
formulas that take in S and give you the cells, and each
cell can be defined from only k many parameters from S
for some k.
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Distal Cell Decompositions in Continuous Logic

Theorem (A., generalizing Chernikov-Simon)

A metric structure M is distal iff every formula φ(x ; y) has a
strong honest definition:

A definable predicate θ(x ; z) such that for any a ∈ Mx and
finite B ⊆ My , there is a tuple d in B with

θ(a; d) = 0

for all a′ ∈ Mx , b ∈ B, |φ(a′, b)− φ(a, b)| ≤ θ(a; d).

Intuitively, θ(x ; d) bounds how much φ(x ; b) can vary from
φ(a; b), so {θ(x ; d) ≤ ε} is a good cell for a cell decomposition.



Distal
Combinatorics

at Purdue

Aaron
Anderson

VC Theory

Incidences and
Cuttings

Distality

Regularity

Continuous
Logic

Distal Exponent/Density

Definition

If a distal cell decomposition T satisfies
|T (S)| = O(|S |d), then we say T has exponent d .

The distal density of a formula ϕ(x ; y) is the infimum of
all d such that ϕ has a distal cell decomposition of
exponent d .

Fact

The exponent of T is at most the number of parameters needed
to define its cells. As this has to be finite, so is the exponent.
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Distal Structures

Definition

A distal structure is one where every definable family admits a
distal cell decomposition.

Fact

As the distal density of ϕ(x ; y) is at least vc∗(Fϕ), and is
always finite if ϕ has a distal cell decomposition, a distal
structure is NIP.
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NIP Structures
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Distal Structures
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Distal Cutting Lemma

Theorem (Chernikov, Galvin, Starchenko)

If ϕ(x ; y) admits a distal cell decomposition with exponent d ,
then for any finite S ⊂ M |y | of size n and 1 < r < n, there is a
uniformly definable partition of M |x | into O(rd) pieces, each of
which is crossed by at most n/r of the formulas ϕ(M; b̄) for
b̄ ∈ S .
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Distal Incidence Bound

Theorem (Chernikov, Galvin, Starchenko)

Let M be a structure and t, d ∈ R≥2. Assume that
E (x , y) ⊆ M |x | ×M |y | is a graph defined by a formula ϕ(x ; y)
which has a distal cell decomposition with exponent t, and
vc-density d .
Then for any finite P ⊆ M |x |,Q ⊆ M |y |, |P| = m, |Q| = n,
such that the subgraph E (P,Q) does not contain a complete
bipartite subgraph Ks,s :

|E (P,Q)| = O
(
m

(t−1)d
td−1 n

t(d−1)
td−1 + m + n

)
.
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Dimension Induction

It suffices to calculate distal density for one dimension.

Theorem (A.)

Let M be a structure in which all finite sets of formulas with
|x | = 1 admit a distal cell decomposition T1 where

Every formula ψ of T1 refers to at most k parameters

For some d0 ∈ N, all finite sets of formulas with |x | = d0

have distal density ≤ r

All finite sets Φ of formulas with |x | = d ≥ d0 have distal
density at most k(d − d0) + r .
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Dimension Induction Proof

The resulting cell decomposition generalizes the “vertical
decomposition” of Chazelle, Edelsbrunner, Guibas, Sharir.

x2

x1

Figure: A “vertical decomposition” for lines in the plane
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Bounds on Distal Density

M Dual VC-Density Distal Density

R with field structure (and more) |x | 2|x | − 2 (1 if |x | = 1)
weakly o-minimal structures |x | 2|x | − 1

ordered vector spaces over ordered division rings |x | |x |
Qp the valued field 2|x | − 1 3|x | − 2

Qp in the linear reduct |x | |x |

All distal density results other than o-minimal |x | = 2
calculated using the dimension induction bound.
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Keisler Measures

A Keisler measure is a regular Borel measure on a type space
Sx(A).

A generically stable Keisler measure resembles a counting
measure in an NIP structure, but these are more versatile for
model-theoretic proofs.

Generically stable measures are particularly well-behaved
(smooth) in distal structures - this characterizes distality.
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Definable Strong Erdős-Hajnal

Definition

Let φ(x ; y) be a formula, A ⊆ M |x |, B ⊆ M |y |. The pair (A,B)
is φ-homogeneous when φ(A;B) = A× B or φ(A;B) = ∅.

Theorem

Let M be a distal structure, φ(x ; y) a formula. There is a
constant δ > 0 and formulas ψ1(x ; z1), ψ2(y ; z2) such that for
any generically stable measures µ1 ∈Mx(M) and
µ2 ∈My (M), there are c1 ∈ Mz1 and c2 ∈ Mz2 such that
µ1(ψ1(M |x |; c1)) ≥ δ and µ2(ψ2(M |x |; c2)) ≥ δ, and the pair
(ψ1(M |x |; c1), ψ2(M |x |; c2)) is φ-homogeneous.

M = R: Alon et al.

o-minimal: Basu

distal: Chernikov, Starchenko

distal metric structure: A.
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Regularity

Definable strong Erdős-Hajnal is just one form of the distal
regularity lemma:

For any ε > 0, by iteratively applying SEH, we can decompose
both M |x | and M |y | into a bounded number of pieces, such
that the total measure of the non-homogeneous “rectangles” is
at most ε.
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Distal vs. SEH

Definable strong Erdős-Hajnal is equivalent to distality, but
only a distal expansion is needed for strong Erdős-Hajnal on
counting measures.

Does SEH for counting measures - or some other combinatorial
property - imply a distal expansion?

Every known example of a non-distality comes from a failure of
SEH, except. . .
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Continuous Logic

In continuous logic, we care about

Metric Structures: bounded metric space, equipped with
Lipschitz functions and [0, 1]-valued “relations”

Formulas: Continuous [0, 1]-valued functions built out of
function and relation symbols

Definable predicates: Uniform limits of formulas

In this context, we can still talk about all of the definitions of
distality.
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Oscillation

Instead of asking for cells which are not crossed, look at
oscillation:

Definition

Let X be a set, Y a metric space, ∆ ⊆ X , f : X → Y . Define

osc(f (x); ∆) = sup
x ,y∈∆

|f (x)− f (y)|.

We can also state a version of strong Erdős-Hajnal, with
(φ, ε)-homogeneous pairs.
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Examples of Distal Metric Structures

Any discrete distal structure (o-minimal, Qp, etc.)

Dual linear continua

Metric (weakly) o-minimal structures, such as

Real closed metric valued fields (RCMVF)

Non-Examples:

The randomization of any structure

Expansions of Infinite-Dimensional Hilbert Spaces,
Atomless Probability Algebras
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Thank you, Purdue!
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