Measures at PKU Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

Generically Stable Measures in Continuous Logic

Aaron Anderson

UCLA

April 22, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	Table of Contents
Measures at PKU Aaron Anderson	
Types and Measures in Continuous Logic NIP	1 Types and Measures in Continuous Logic
Orthogonality and Distality	2 NIP
	3 Orthogonality and Distality

・ロト・雪・・雪・・雪・・白・

Metric Structures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Definition

A *metric language* is just like a regular first-order language, but each symbol gets a Lipschitz constant.

Definition

A metric structure consists of:

- A complete bounded metric space
- For each *n*-ary *k*-Lipschitz function symbol, a *k*-Lipschitz function $M^n \rightarrow M$
- For each *n*-ary *k*-Lipschitz relation symbol, a *k*-Lipschitz function $M^n \rightarrow [0, 1]$

Formulas

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Definition

A *atomic formula* is defined as usual, except instead of =, the basic relation is d(x, y).

Definition

- A formula is
 - An atomic formula
 - A continuous combination $u(\phi_1, \ldots, \phi_n)$ of formulas.
 - $\ \ \, {\rm sup}_x\,\phi\,\,{\rm or}\,\,{\rm inf}_x\,\phi$

Definition

A *definable predicate* is a uniform limit of formulas. This allows countably infinitely many variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Type Spaces

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Definition

- A complete type in x over A is a consistent assignment of a real value to each formula φ(x) with parameters in A.
- Give the space S_x(A) of such types the coarsest topology where p → φ(p) is continuous - this is compact Hausdorff.

Definable predicates are the continuous functions $S_x(A) \rightarrow [0, 1]$, and $p \mapsto \phi(p)$ is also continuous for them.

Properties of Types

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality Let \mathcal{U} be a monster model, $p \in S_{x}(\mathcal{U})$.

Definition

- *p* is *A*-invariant when $\phi(p; b)$ depends only on tp(b/A).
- If p is A-invariant, define $F_{p,A}^{\phi}: S_y(A) \to [0,1]$ by $F_{p,A}^{\phi}(q) = \phi(p; b)$ when $b \models q$.
- *p* is *A*-Borel definable when $F_{p,A}^{\phi}$ is Borel
- p is A-definable when $F_{p,A}^{\phi}$ is continuous
- p is A-approximately realized/finitely satisfiable when p is in the closure of A.

Keisler Measures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Definition

- A Keisler measure in x over A is a regular Borel probability measure on S_x(A).
- Give the space $\mathfrak{M}_{x}(A)$ of such measures the coarsest topology where $\mu \mapsto \int_{\mathcal{S}_{x}(A)} \phi(x) d\mu$ is continuous also compact Hausdorff.

We could also define these in terms of linear functionals:

$$egin{aligned} & \mathcal{L}(\mathcal{S}_{\mathsf{X}}(\mathcal{A}), [0,1]) o [0,1] \ & \phi(\mathsf{X}) \mapsto \int_{\mathcal{S}_{\mathsf{X}}(\mathcal{A})} \phi(\mathsf{X}) \, d\mu \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties of Measures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Let $\mu \in \mathfrak{M}_{\mathsf{x}}(\mathcal{U})$.

Definition

- μ is *A*-invariant when $\phi(p; b)$ depends only on tp(b/A).
- If μ is A-invariant, define $F^{\phi}_{\mu,A}: S_y(A) \to [0,1]$ by $F^{\phi}_{\mu,A}(q) = \int_{S_y(A)} \phi(x; b) d\mu$ when $b \vDash q$.
- μ is A-Borel definable when $F_{\mu,A}^{\phi}$ is Borel
- μ is *A*-*definable* when $F^{\phi}_{\mu,A}$ is continuous
- μ is A-approximately realized/finitely satisfiable when μ is in the closed convex hull of A.
- μ is *A*-smooth when it is the unique extension of $\mu|_A$.

Product Measures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Let $\mu \in \mathfrak{M}_{\mathsf{x}}(\mathsf{M}), \nu \in \mathfrak{M}_{\mathsf{y}}(\mathsf{M}).$

Definition

ω

$$\in \mathfrak{M}_{xy}(M) \text{ is a product measure of } \mu \text{ and } \nu \text{ when}$$
$$\int_{\mathcal{S}_{xy}(M)} \phi(x)\psi(y) \, d\omega = \int_{\mathcal{S}_{x}(M)} \phi(x) \, d\mu \int_{\mathcal{S}_{y}(M)} \psi(y) \, d\nu.$$

Definition

When μ is A-Borel definable, define $\mu\otimes\nu$ by

$$\int_{\mathcal{S}_{xy}(\mathcal{M})} \phi(x;y) \, d(\mu \otimes \nu) = \int_{\mathcal{S}_{y}(\mathcal{A}')} \mathcal{F}_{\mu,\mathcal{A}'}^{\phi} \, d\nu|_{\mathcal{A}'}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の(~

for $A' \supset A$ containing the parameters of $\phi(x; y)$.

	Table of Contents
Measures at PKU Aaron Anderson	
Types and Measures in Continuous Logic NIP	1 Types and Measures in Continuous Logic
Orthogonality and Distality	2 NIP
	3 Orthogonality and Distality

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

ε -approximations

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality Fix a family of functions $\mathcal{F} \subseteq [0,1]^X$, a probability measure μ on X, and $\varepsilon > 0$.

Definition

Define the average

$$\operatorname{Av}(a_1,\ldots,a_n;f)=\frac{1}{n}(f(a_1)+\cdots+f(a_n)).$$

Say that a tuple (a₁,..., a_n) is a ε-approximation for F with respect to µ when for every f ∈ F,

$$\operatorname{Av}(a_1,\ldots,a_n;f) - \mathbb{E}_{\mu}[f(x)]| \leq \varepsilon_1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

VC-Classes and NIP Theories

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Definition

 \mathcal{F} is a *VC-class* when for every $\varepsilon > 0$, there is *n* such that for every μ , there is a ε -approximation of size $\leq n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

There are other ways of characterizing these, including a generalization of VC-dimension.

Definition

T is NIP when every $\{\phi(x; b) : b \in U^{y}\}$ is a VC-class.

fim and fam measures

Definition

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

- μ is finitely approximated (fam) in M when for every $\varphi(x; y) \in \mathcal{L}(M)$ and every $\varepsilon > 0$, there exists a ε -approximation $(a_1, \ldots, a_n) \in (M^x)^n$ for $\{\varphi(x; b) : b \in \mathcal{U}^y\}$ with respect to μ .
- μ is a frequency interpretation measure (fim) over M when for every $\varphi(x; y) \in \mathcal{L}(M)$, there is a family of formulas $(\theta_n(x_1, \ldots, x_n) : n \in \omega)$ with parameters in M such that $\lim_{n\to\infty} \mu^{(n)}(\theta_n(x_1, \ldots, x_n)) = 1$, and for every $\varepsilon > 0$, for large enough n, any $\bar{a} \in (\mathcal{U}^{\times})^n$ satisfying $\theta_n(\bar{a})$ is a ε -approximation to $\varphi(x; y)$ with respect to μ .

Generically Stable Measures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Assume NIP.

Theorem (A. generalizing Hrushovski-Pillay-Simon)

The following are equivalent for $\mu \in \mathfrak{M}_{x}(M)$:

- μ is definable and finitely satisfiable
- μ is fam
- $\blacksquare \mu$ is fim
- $\mu(x) \otimes \mu(y) = \mu(y) \otimes \mu(x)$

Definition

 $\mu \in \mathfrak{M}_{\times}(M)$ is generically stable when these conditions hold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Approximating NIP Predicates

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality Using the fim property, we can show the following:

Theorem (A. generalizing Chernikov-Starchenko)

Assume NIP. For each $\phi(x; y)$ and $\varepsilon > 0$, there are θ_i, χ_i with parameters in M such that for all generically stable measures $\mu \in \mathfrak{M}_x(M), \nu \in \mathfrak{M}_y(M)$,

$$\int_{\mathcal{S}_{xy}(M)} \left| \phi(x;y) - \sum_{i=1}^{n} \theta_i(x) \chi_i(y) \right| \, d\mu \otimes \nu.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Regularity Partitions

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

- For each $\theta_i(x)$, make a partition of unity $\sum_{\psi \in \Psi} \psi(x) = 1$
- On each support $\{\psi(x) > 0\}$, $\theta_i(x)$ varies by at most ε
- Each ψ is definable, or each is constructible (indicator of difference of zerosets)
- Combine these partitions to get a partition that works for all θ_i

- Do the same for χ_i
- Taking products from the two partitions, we get a partition on $M^{\times} \times M^{y}$

Regularity Partitions

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

Lemma (A.)

For any $\phi(x; y) = \sum_{i=1}^{n} \theta_i(x)\chi_i(y)$, there is a partition of unity $\sum_{\psi \in \Psi} \psi(x; y) = 1$ where

- Each $\psi(x; y)$ factors as $\psi_x(x)\psi_y(y)$
- Each ψ is definable, or each ψ is constructible
- The support of each ψ(x; y) is (φ, ε)-homogeneous (the value of φ varies by at most ε)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

NIP Regularity

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Theorem (A., after a similar result by Chernikov-Towsner)

Assume NIP.

For any $\phi(x; y)$, $\varepsilon > 0$, μ, ν generically stable, there is a partition of unity $\sum_{\psi \in \Psi} \psi(x; y) = 1$ where

- Each $\psi(x; y)$ factors as $\psi_x(x)\psi_y(y)$
- Each ψ is definable, or each ψ is constructible, only parameters depend on μ, ν
- For each ψ , there is r_{ψ} such that

$$\sum_{\psi} \int_{\mathcal{S}_{xy}(\mathcal{M})} \psi(x;y) \left| \phi(x;y) - r_{\phi}
ight| \, d\mu \otimes
u \leq arepsilon$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

NIP Regularity

Call ψ good if

Measures at PKU

Aaron Anderson

$$\int_{\mathcal{S}_{xy}(M)} \psi(x;y) \left| \phi(x;y) - r_{\phi} \right| \, d\mu \otimes \nu \leq \varepsilon \int_{\mathcal{S}_{xy}(M)} \psi(x;y) \left| \, d\mu \otimes \nu \right|$$

Measures in Continuous Logic

NIP

Orthogonality and Distality

	Table of Contents
Measures at PKU	
Aaron Anderson	
Measures in Continuous Logic	1 Types and Measures in Continuous Logic
NIP	
Orthogonality and Distality	2 NIP

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

3 Orthogonality and Distality

Orthogonal Measures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Definition

 $\mu \in \mathfrak{M}_{x}(M), \nu \in \mathfrak{M}_{y}(M)$ are *weakly orthogonal* when they have a unique product measure.

Equivalently, the integration functional

$$\sum_{i=1}^{n} \theta_{i}(x)\chi_{i}(y) \mapsto \sum_{i=1}^{n} \left(\int_{\mathcal{S}_{x}(M)} \theta_{i}(x) \, d\mu \right) \left(\int_{\mathcal{S}_{y}(M)} \chi_{i}(y) \, d\nu \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

has a unique extension.

Extensions of Keisler Functionals

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

Lemma (A.)

If V is a vector subspace of the definable predicates on $S_x(M)$, and μ a functional/partial measure defined on V, then we can find an extension μ' with

$$\int_{\mathcal{S}_{\mathsf{x}}(M)}\phi(\mathsf{x})\,d\mu'=\mathsf{r}$$

if and only if

$$\int_{\mathcal{S}_{\mathsf{x}}(M)}\psi^{-}(\mathsf{x})\,d\mu\leq \mathsf{r}\leq\int_{\mathcal{S}_{\mathsf{x}}(M)}\psi^{+}(\mathsf{x})\,d\mu$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for all $\psi^-(x) \le \phi(x) \le \psi^+(x)$.

Orthogonal Measures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Lemma (A. generalizing Simon)

Measures $\mu \in \mathfrak{M}_{x}(M), \nu \in \mathfrak{M}_{y}(M)$ are weakly orthogonal if and only if for every $\phi(x; y)$ and $\varepsilon > 0$, there exist $\psi^{-}(x; y), \psi^{+}(x; y)$, each of the form $\sum_{i=1}^{m} \theta_{i}^{\pm}(x)\chi_{i}^{\pm}(y)$, such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\psi^{-}(x; y) \leq \phi(x; y) \leq \psi^{+}(x; y).$

• For any product measure ω of μ, ν , $\int_{S_{xy}(M)} (\psi^+ - \psi^-) d\omega \leq \varepsilon.$

Orthogonal Regularity

Measures at PKU Aaron

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

Theorem (A., generalizing Simon)

For any $\phi(x; y)$, $\varepsilon, \delta > 0$, μ, ν weakly orthogonal, there is a partition of unity $\sum_{\psi \in \Psi} \psi(x; y) = 1$ where

- Each $\psi(x; y)$ factors as $\psi_x(x)\psi_y(y)$
- Each ψ is definable, or each ψ is constructible
- The total integral of non-($\phi,\varepsilon)$ -homogeneous ψ is at most δ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orthogonal Regularity

Measures at PKU Aaron

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

Theorem (A., generalizing Simon)

For any $\phi(x; y)$, $\varepsilon, \delta > 0$, μ, ν weakly orthogonal, there is a partition of unity $\sum_{\psi \in \Psi} \psi(x; y) = 1$ where

- Each $\psi(x; y)$ factors as $\psi_x(x)\psi_y(y)$
- Each ψ is definable, or each ψ is constructible
- The total integral of non-($\phi,\varepsilon)$ -homogeneous ψ is at most δ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orthogonal Regularity

Measures at PKU Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality Good pieces are (ϕ, ε) -homogeneous Bad pieces have total integral $\leq \delta$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Distal (Metric) Structures

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Theorem (A.)

For an NIP theory T, the following are equivalent:

- Every generically stable measure is smooth
- Any two generically stable measures commute.

We call such a theory, and its models, *distal*. For example:

- o-minimal structures such as RCF
- Q_p with ring or linear structure (in Macintyre-ish languages)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Metric structures:

- Real closed metric valued fields
- Dual linear continua

Generically Stable and Smooth

Measures at PKU

Aaron Anderson

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Lemma (A. generalizing Simon)

 μ is smooth over M if and only if it's weakly orthogonal to all measures over M.

This gives us orthogonal regularity for generically stable measures, which we can uniformize using

Lemma (A. generalizing Simon)

The ultraproduct of a family of generically stable measures is generically stable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Distal Regularity

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

Theorem (A., generalizing Chernikov-Starchenko)

Assume T distal. For any $\phi(x; y)$, $\varepsilon, \delta > 0$, μ, ν generically stable, there is a partition of unity $\sum_{\psi \in \Psi} \psi(x; y) = 1$ where

- Each $\psi(x; y)$ factors as $\psi_x(x)\psi_y(y)$
- Each ψ is definable, or each ψ is constructible, only parameters depend on μ,ν
- The total integral of non-(ϕ, ε)-homogeneous ψ is at most δ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Distal Regularity

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality Same as orthogonal regularity, but uniformly definable pieces.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Definable Strong Erdős-Hajnal

Measures at PKU

Aaron Anderson

Types and Measures ir Continuous Logic

NIP

Orthogonality and Distality

heorem

Assume T distal. For any $\phi(x; y)$, $\varepsilon > 0$, there are $\theta(x; w)$, $\chi(y; z)$, $\delta > 0$ such that for all μ, ν generically stable, there are $c \in M^w$, $d \in M^z$ where

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\theta(x; w)\chi(y; z) > 0$ is (ϕ, ε) -homogeneous

$$\int_{\mathcal{S}_{\mathsf{x}}(M)} \theta(\mathsf{x}; \mathsf{c}) \, \mathsf{d}\mu \ge \epsilon$$

•
$$\int_{S_{y}(M)} \chi(y; d) d\nu \geq \delta$$

PKU	
Aaron	
Anderson	

Types and Measures in Continuous Logic

NIP

Orthogonality and Distality

Thank you, PKU!

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●