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Probably Approximately Correct Learning

A class H of functions X → [0, 1] is PAC learnable when for every ε, δ > 0,
there is n such that when. . .

(x1, y1), . . . , (xn, yn) ∈ X × [0, 1] are i.i.d. random,

we can choose h ∈ H (hoping that h(xn+1) ≈ yn+1) such that

with probability at least 1− δ,

E [|yn+1 − h(xn+1)|] is within ε of the best case for all h ∈ H.

We call n = n(ε, δ) the sample complexity.
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Fat-Shattering Dimension

Theorem (Almost Folklore)

H is PAC-learnable if and only if the γ-fat-shattering dimension is finite for
all γ > 0.

Definition

Let H be a class of functions X → [0, 1] and let γ > 0. We say H has
γ-fat-shattering dimension at least n when there are

x1, . . . , xn ∈ X

s1, . . . , sn ∈ [0, 1]

For every E ⊆ {1, . . . , n}, a function hE ∈ H satisfying

if i ∈ E , hE (xi ) ≥ si + γ
if i 6∈ E , hE (xi ) ≤ si − γ.
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PAC Learning Bound

Theorem (Bartlett, Long)

The sample complexity n(ε, δ) of PAC-learning H is bounded by

O

(
1

ε2
·
(
FatSHDim ε

9
(H) · log2

(
1

ε

)
+ log

(
1

δ

)))
Hu et al. extended this to learning a class of measures on H, at the cost
of a much worse bound.

We’ll use logic to find examples of learnable classes and improve the Hu et
al. bound.
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The Boolean-Valued Case

Recall H is a class of functions X → [0, 1].

Consider the case where the functions h ∈ H are {0, 1}-valued.

These are the characteristic functions of subsets of X

Where can we get interesting classes C of subsets of X?
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Definable Classes

Let M be a first-order L-structure, and let φ(x̄ , ȳ) be an L-formula, with
|x̄ | = m, |ȳ | = n.

Definition

Let Cφ be the class of subsets of Mm, indexed by Mn, given by

Cφ = (Cb̄ : b̄ ∈ Mn)

Cb̄ = {ā : M � φ(ā, b̄)}.

Any class of sets that arises this way we call definable in M by φ.
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NIP

Definition

A formula φ(x̄ , ȳ) is called NIP in a structure M when every class of sets
definable by φ has finite VC-dimension.

We call M NIP when every formula is NIP in M.

NIP structures include

The real field (R; 0, 1,+,×, <)

Any other o-minimal structure

The complex field (C; 0, 1,+,×)

Any other stable structure
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Model Theory to Learnability

For a definable class of sets C, the properties in each row are equivalent:

Model Theory Combinatorics Learning Theory

NIP finite VC dimension PAC learnable
stable finite Littlestone dimension online learnable

These definitions have been generalized to the real-valued case - using
continuous logic.
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Continuous Logic

There is a framework for continuous logic, where formulas take values
in [0, 1].

Ask James Hanson for the details.

A formula φ(x̄ , ȳ) of continuous logic defines a class H of functions
Mm → [0, 1].

If all such classes have finite γ-fat-shattering dimension for all γ > 0,
the formula is NIP.

The connection from stability to real-valued online learning was
understudied.
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Stable Structures in Continuous Logic

Basic examples of stable (and thus NIP) metric structures:

Example

Let M be a boolean algebra with a probability measure µ. Can add

metric µ(x \ y ∪ y \ x)

functions 0, 1,c ,∩,∪
relation µ(x).

Example

Let M be the unit ball of an infinite-dimensional Hilbert space, with the
metric, 〈·, ·〉, scalar multiplication, and partial addition.
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The Expectation Class

Suppose (Ω,Σ, µ) is a probability space and F = (Hω : ω ∈ Ω) is a family
of function classes Hω = (hω,y : y ∈ Y ).

Definition

Assuming measurability, define EFy : X → [0, 1] by

EFy (x) = E [hω,y (x)] .

We call the class EF = {EFy : y ∈ Y } the expectation class of F .

Think of EF and every Hω as a class of functions h : X → [0, 1] indexed
by Y .

Theorem (Ben Yaacov, Keisler)

If F is uniformly NIP/stable, then EF is NIP/stable.
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The Randomization

We can apply this to randomize a single class H of functions X → [0, 1],
indexed by Y .

Definition

Let X,Y be appropriate spaces of random variables Ω→ X and
Ω→ Y .

Define Hω = {hω,y : y ∈ Y} by

hω,y(x) = hy(ω)(x(ω)).

Let RH : X × Y → [0, 1] be the expectation class of this family.

We call this new class the expectation class of H.
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PAC Learning The Randomization

Theorem (A., Benedikt)

If H has FatSHDim ε
50

(H) ≤ d , one can PAC learn the randomization class
of H with sample complexity

O

(
d

ε4
· log2 d

ε
+

1

ε2
· log

1

δ

)
.

FatSHDim can be used to bound Rademacher mean width

Rademacher mean width can be used to bound sample complexity

Adapt Ben Yaacov’s proof that Gaussian mean width is preserved
under randomization
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Online Learning

At step i , an adversary chooses (xi , yi ) ∈ X × [0, 1]

Given xi , you guess y ′i ≈ yi (you can use randomness)

The adversary tells you yi , penalizes you |yi − y ′i |
After n steps, compare to the best strategy y ′i = h(xi ) for h ∈ H.

Call the difference in penalty the regret.

H is online learnable if whatever the adversary does, regret is
sublinear in n.
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Online Learning Bounds

To bound regret in online learning, replace our existing notions with
sequential versions, replacing subsets E ⊆ {1, . . . , n} with branches of a
binary tree of depth n:

Theorem (Rakhlin, Sridharan, Tewari)

Finite γ-sequential-fat-shattering dimension is equivalent to online
learnability, with bounds given.

Their proof goes through sequential Rademacher mean width.
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Our Online Learning Results

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to finite
γ-sequential-fat-shattering dimension for all γ > 0.

Sequential Rademacher mean width, and thus online learnability, is
preserved under randomization.

Theorem (A., Benedikt)

The minimax regret of online learning for the randomization class of H
with γ-sequential-fat-shattering dimension at most d on a run of length n
is at most

4 · γ · n + 12 · (1− γ) ·

√
d · n · log

(
2 · e · n
γ

)
.

Aaron Anderson (UPenn) Continuous Logic and Learning Bounds May 8, 2025 16 / 18



Realizable Learning

In realizable PAC or online learning, assume there is some h ∈ H such
that for all i , yi = h(xi ).

Classically, this assumption does not change learnability.

We show that proposed definitions of realizable PAC and online
learnability for real-valued function classes are not closed under basic
operations like dualization, continuous combinations, or
randomization.

We propose better definitions that are, inspired by model theory.
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Thank you, ICICL!
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