Continuous Logic and Learning Bounds

Aaron Anderson

UPenn

May 8, 2025

Aaron Anderson (UPenn)

Continuous Logic and Learning Bounds

May 8, 2025 1 / 18

∃ ▶ ∢

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

• $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,

- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least $1-\delta$,

• $\mathbb{E}[|y_{n+1} - h(x_{n+1})|]$ is within ε of the best case for all $h \in \mathcal{H}$. We call $n = n(\varepsilon, \delta)$ the sample complexity.

Theorem (Almost Folklore)

 \mathcal{H} is PAC-learnable if and only if the γ -fat-shattering dimension is finite for all $\gamma > 0$.

Definition

Let \mathcal{H} be a class of functions $X \to [0, 1]$ and let $\gamma > 0$. We say \mathcal{H} has γ -fat-shattering dimension at least n when there are

•
$$x_1, \ldots, x_n \in X$$

• $s_1, \ldots, s_n \in [0, 1]$
• For every $E \subseteq \{1, \ldots, n\}$, a function $h_E \in \mathcal{H}$ satisfying
• if $i \in E$, $h_E(x_i) \ge s_i + \gamma$
• if $i \notin E$, $h_E(x_i) \le s_i - \gamma$.

Theorem (Bartlett, Long)

The sample complexity $n(\varepsilon, \delta)$ of PAC-learning \mathcal{H} is bounded by

$$O\left(\frac{1}{\epsilon^2} \cdot \left(\operatorname{FatSHDim}_{\frac{\epsilon}{9}}\left(\mathcal{H}\right) \cdot \log^2\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

Hu et al. extended this to learning a class of measures on $\mathcal{H},$ at the cost of a much worse bound.

We'll use logic to find examples of learnable classes and improve the Hu et al. bound.

4 => 4

Aaron Anderson (UPenn)

- Recall \mathcal{H} is a class of functions $X \to [0, 1]$.
- Consider the case where the functions $h \in \mathcal{H}$ are $\{0, 1\}$ -valued.
- These are the characteristic functions of subsets of X
- Where can we get interesting classes C of subsets of X?

Let *M* be a first-order *L*-structure, and let $\phi(\bar{x}, \bar{y})$ be an *L*-formula, with $|\bar{x}| = m, |\bar{y}| = n$.

Definition

Let C_{ϕ} be the class of subsets of M^m , indexed by M^n , given by

$$C_{\phi} = (C_{\bar{b}} : \bar{b} \in M^n)$$
$$C_{\bar{b}} = \{\bar{a} : M \vDash \phi(\bar{a}, \bar{b})\}.$$

Any class of sets that arises this way we call *definable* in M by ϕ .

Definition

A formula $\phi(\bar{x}, \bar{y})$ is called *NIP* in a structure *M* when every class of sets definable by ϕ has finite VC-dimension.

We call M NIP when every formula is NIP in M.

NIP structures include

- The real field (\mathbb{R} ; 0, 1, +, ×, <)
- Any other *o*-minimal structure
- The complex field (\mathbb{C} ; 0, 1, +, \times)
- Any other stable structure

For a definable class of sets \mathcal{C} , the properties in each row are equivalent:

Model Theory	Combinatorics	Learning Theory
NIP	finite VC dimension	PAC learnable
stable	finite Littlestone dimension	online learnable

These definitions have been generalized to the real-valued case - using *continuous logic.*

- There is a framework for *continuous logic*, where formulas take values in [0, 1].
- Ask James Hanson for the details.
- A formula $\phi(\bar{x}, \bar{y})$ of continuous logic defines a class \mathcal{H} of functions $M^m \to [0, 1]$.
- If all such classes have finite $\gamma\text{-fat-shattering}$ dimension for all $\gamma>$ 0, the formula is NIP.
- The connection from stability to real-valued online learning was understudied.

Basic examples of stable (and thus NIP) metric structures:

Example

Let ${\it M}$ be a boolean algebra with a probability measure $\mu.$ Can add

- metric $\mu(x \setminus y \cup y \setminus x)$
- functions $0, 1, ^{c}, \cap, \cup$
- relation $\mu(x)$.

Example

Let *M* be the unit ball of an infinite-dimensional Hilbert space, with the metric, $\langle \cdot, \cdot \rangle$, scalar multiplication, and partial addition.

• < E • < E •

The Expectation Class

Suppose (Ω, Σ, μ) is a probability space and $\mathcal{F} = (\mathcal{H}_{\omega} : \omega \in \Omega)$ is a family of function classes $\mathcal{H}_{\omega} = (h_{\omega,y} : y \in Y)$.

Definition

Assuming measurability, define $\mathbb{E}\mathcal{F}_y: X \to [0,1]$ by

 $\mathbb{E}\mathcal{F}_{y}(x)=\mathbb{E}\left[h_{\omega,y}(x)\right].$

We call the class $\mathbb{E}\mathcal{F} = \{\mathbb{E}\mathcal{F}_y : y \in Y\}$ the *expectation class* of \mathcal{F} .

Think of $\mathbb{E}\mathcal{F}$ and every \mathcal{H}_{ω} as a class of functions $h: X \to [0, 1]$ indexed by Y.

Theorem (Ben Yaacov, Keisler)

If \mathcal{F} is uniformly NIP/stable, then $\mathbb{E}\mathcal{F}$ is NIP/stable.

< 日 > < 同 > < 回 > < 回 > < 回 > <

We can apply this to randomize a single class \mathcal{H} of functions $X \to [0, 1]$, indexed by Y.

Definition

• Let \mathbf{X}, \mathbf{Y} be appropriate spaces of random variables $\Omega \to X$ and $\Omega \to Y$.

• Define
$$\mathcal{H}_{\omega} = \{h_{\omega, \mathbf{y}} : \mathbf{y} \in \mathbf{Y}\}$$
 by

$$h_{\omega,\mathbf{y}}(\mathbf{x}) = h_{\mathbf{y}(\omega)}(\mathbf{x}(\omega)).$$

• Let $R\mathcal{H}: X imes Y o [0,1]$ be the expectation class of this family.

• We call this new class the *expectation class* of \mathcal{H} .

Theorem (A., Benedikt)

If \mathcal{H} has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the randomization class of \mathcal{H} with sample complexity

$$O\left(rac{d}{\epsilon^4} \cdot \log^2 rac{d}{\epsilon} + rac{1}{\epsilon^2} \cdot \log rac{1}{\delta}
ight).$$

- FatSHDim can be used to bound Rademacher mean width
- Rademacher mean width can be used to bound sample complexity
- Adapt Ben Yaacov's proof that *Gaussian* mean width is preserved under randomization

- At step i, an adversary chooses $(x_i, y_i) \in X imes [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)
- The adversary tells you y_i , penalizes you $|y_i y'_i|$
- After *n* steps, compare to the best strategy $y'_i = h(x_i)$ for $h \in \mathcal{H}$.
- Call the difference in penalty the *regret*.
- \mathcal{H} is online learnable if whatever the adversary does, regret is sublinear in n.

To bound regret in online learning, replace our existing notions with *sequential* versions, replacing subsets $E \subseteq \{1, ..., n\}$ with branches of a binary tree of depth n:

Theorem (Rakhlin, Sridharan, Tewari)

Finite γ -sequential-fat-shattering dimension is equivalent to online learnability, with bounds given.

Their proof goes through sequential Rademacher mean width.

Theorem (A., Benedikt)

- Stability in continuous logic is equivalent to finite γ -sequential-fat-shattering dimension for all $\gamma > 0$.
- Sequential Rademacher mean width, and thus online learnability, is preserved under randomization.

Theorem (A., Benedikt)

The minimax regret of online learning for the randomization class of \mathcal{H} with γ -sequential-fat-shattering dimension at most d on a run of length n is at most

$$4 \cdot \gamma \cdot n + 12 \cdot (1 - \gamma) \cdot \sqrt{d \cdot n \cdot \log\left(\frac{2 \cdot e \cdot n}{\gamma}\right)}.$$

- In *realizable* PAC or online learning, assume there is some $h \in \mathcal{H}$ such that for all i, $y_i = h(x_i)$.
- Classically, this assumption does not change learnability.
- We show that proposed definitions of realizable PAC and online learnability for real-valued function classes are not closed under basic operations like dualization, continuous combinations, or randomization.
- We propose better definitions that are, inspired by model theory.

Thank you, ICICL!

Aaron Anderson (UPenn)

э.

< ロ > < 四 > < 回 > < 回 > <</p>

590