	t١	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣��

Continuous Logic and Learning Bounds

Aaron Anderson

UPenn

June 24, 2025

Intro	PAC Learning	Online Learning
● 00		

Model Theory to Learnability

• Let $C = \{c_y : y \in Y\}$ be a class of subsets of X indexed by Y.

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Intro	PAC Learnin
● 00	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Model Theory to Learnability

- Let $C = \{c_y : y \in Y\}$ be a class of subsets of X indexed by Y.
- C is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ such that $x \in c_y \iff \phi(x; y)$.

Online Learning 0000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Model Theory to Learnability

- Let $C = \{c_y : y \in Y\}$ be a class of subsets of X indexed by Y.
- C is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ such that $x \in c_y \iff \phi(x; y)$.
- The properties in each row are equivalent:

Model Theory	Combinatorics	Learning Theory
NIP	finite VC dimension	PAC learnable
stable	finite Littlestone dimension	online learnable

Intro	PAC Learning	
000		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Continuous Logic to Learnability

Let H = {h_y : y ∈ Y} be a class of functions X → [0,1] indexed by Y.

Intro	PAC Learning
000	

Online Learning 0000

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Continuous Logic to Learnability

- Let H = {h_y : y ∈ Y} be a class of functions X → [0,1] indexed by Y.
- \mathcal{H} is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ of continuous logic such that $h_y(x) = \phi(x; y)$.

Intro	PAC Learnin
000	

Online Learning

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Continuous Logic to Learnability

- Let H = {h_y : y ∈ Y} be a class of functions X → [0,1] indexed by Y.
- \mathcal{H} is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ of continuous logic such that $h_y(x) = \phi(x; y)$.
- The properties in the table have been generalized to \mathcal{H} , but the connections are understudied.

Online Learning

New Learnable Function Classes

Theorem (A., Benedikt)

A class \mathcal{H} of functions $X \to [0,1]$ is stable iff it is online learnable.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Online Learning 0000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

New Learnable Function Classes

Theorem (A., Benedikt)

A class \mathcal{H} of functions $X \to [0,1]$ is stable iff it is online learnable.

Theorem (A., Benedikt)

The randomization of a PAC/online learnable function class $\mathcal H$ is also PAC/online learnable.

Online Learning

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula ϕ of continuous logic is NIP iff the class of functions it defines has finite γ -fat-shattering dimension for all $\gamma > 0$.

Online Learning

Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula ϕ of continuous logic is NIP iff the class of functions it defines has finite γ -fat-shattering dimension for all $\gamma > 0$.

Definition

Let \mathcal{H} be a class of functions $X \to [0, 1]$ and let $\gamma > 0$. We say \mathcal{H} has γ -fat-shattering dimension at least n when there are

•
$$x_1, \ldots, x_n \in X$$

• $s_1, \ldots, s_n \in [0, 1]$
• For every $E \subseteq \{1, \ldots, n\}$, a function $h_E \in \mathcal{H}$ satisfying
• if $i \in E$, $h_E(x_i) \ge s_i + \gamma$
• if $i \notin E$, $h_E(x_i) \le s_i - \gamma$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

• $(x_1, y_1), ..., (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least 1δ ,

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least 1δ ,
- $\mathbb{E}[|y_{n+1} h(x_{n+1})|]$ is within ε of the best case for all $h \in \mathcal{H}$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least 1δ ,

• $\mathbb{E}[|y_{n+1} - h(x_{n+1})|]$ is within ε of the best case for all $h \in \mathcal{H}$. We call $n = n(\varepsilon, \delta)$ the sample complexity.

I				
	С	С	С	

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

PAC Learning Bound

Theorem (Bartlett, Long)

The sample complexity $n(\varepsilon, \delta)$ of PAC-learning $\mathcal H$ is bounded by

$$O\left(\frac{1}{\epsilon^2} \cdot \left(\operatorname{FatSHDim}_{\frac{\epsilon}{9}}\left(\mathcal{H}\right) \cdot \log^2\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

In fact, \mathcal{H} is PAC-learnable if and only if the γ -fat-shattering dimension is finite for all $\gamma > 0$.

Hu et al. extended this to learning a class of measures on \mathcal{H} , at the cost of a much worse bound.

I				
	С	С	С	

PAC Learning Bound

Theorem (Bartlett, Long)

The sample complexity $n(\varepsilon, \delta)$ of PAC-learning $\mathcal H$ is bounded by

$$O\left(\frac{1}{\epsilon^2} \cdot \left(\operatorname{FatSHDim}_{\frac{\epsilon}{9}}\left(\mathcal{H}\right) \cdot \log^2\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

In fact, \mathcal{H} is PAC-learnable if and only if the γ -fat-shattering dimension is finite for all $\gamma > 0$.

Hu et al. extended this to learning a class of measures on \mathcal{H} , at the cost of a much worse bound.

We'll use continuous logic to find examples of learnable classes and improve the Hu et al. bound.

	PAC Learning 000	Randomization ●00	Online Learning 0000
TI E			
I he Evr	vectation Class		

Suppose (Ω, Σ, μ) is a probability space and $\mathcal{F} = (\mathcal{H}_{\omega} : \omega \in \Omega)$ is a family of function classes $\mathcal{H}_{\omega} = (h_{\omega,y} : y \in Y)$.

Definition

Assuming measurability, define $\mathbb{E}\mathcal{F}_y:X
ightarrow [0,1]$ by

$$\mathbb{E}\mathcal{F}_{y}(x)=\mathbb{E}\left[h_{\omega,y}(x)\right].$$

We call the class $\mathbb{E}\mathcal{F} = \{\mathbb{E}\mathcal{F}_y : y \in Y\}$ the *expectation class* of \mathcal{F} .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

	PAC Learning	Randomization	Online Learning
	000	●00	0000
The Evne	ectation Class		

Suppose (Ω, Σ, μ) is a probability space and $\mathcal{F} = (\mathcal{H}_\omega : \omega \in \Omega)$ is

a family of function classes $\mathcal{H}_{\omega} = (h_{\omega,y} : y \in Y).$

Definition

Assuming measurability, define $\mathbb{E}\mathcal{F}_y:X
ightarrow [0,1]$ by

$$\mathbb{E}\mathcal{F}_{y}(x)=\mathbb{E}\left[h_{\omega,y}(x)\right].$$

We call the class $\mathbb{E}\mathcal{F} = \{\mathbb{E}\mathcal{F}_y : y \in Y\}$ the *expectation class* of \mathcal{F} .

Think of $\mathbb{E}\mathcal{F}$ and every \mathcal{H}_{ω} as a class of functions $h: X \to [0, 1]$ indexed by Y.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

	PAC Learning	Randomization	Online Learning
	000	○●○	0000
The Rar	ndomization		

If the classes $\mathcal{H} \in \mathcal{F}$ are uniformly definable in some structure M, then $\mathbb{E}\mathcal{F}$ is definable in a structure M^R (of continuous logic) called the *randomization* of M, whose elements are M-valued random variables.

Theorem (Ben Yaacov, Keisler)

- If \mathcal{F} is uniformly NIP/stable, then $\mathbb{E}\mathcal{F}$ is NIP/stable.
- If a structure M is NIP/stable, then M^R is NIP/stable.

n		

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PAC Learning Expectations

Theorem (A., Benedikt)

If each $\mathcal{H} \in \mathcal{F}$ has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the expectation class $\mathbb{E}\mathcal{F}$ with sample complexity

$$O\left(\frac{d}{\epsilon^4} \cdot \log^2 \frac{d}{\epsilon} + \frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta}\right).$$

С	0	IC	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

PAC Learning Expectations

Theorem (A., Benedikt)

If each $\mathcal{H} \in \mathcal{F}$ has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the expectation class $\mathbb{E}\mathcal{F}$ with sample complexity

$$O\left(\frac{d}{\epsilon^4} \cdot \log^2 \frac{d}{\epsilon} + \frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta}\right).$$

• FatSHDim can be used to bound Rademacher mean width

С	0	IC	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

PAC Learning Expectations

Theorem (A., Benedikt)

If each $\mathcal{H} \in \mathcal{F}$ has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the expectation class $\mathbb{E}\mathcal{F}$ with sample complexity

$$O\left(rac{d}{\epsilon^4} \cdot \log^2 rac{d}{\epsilon} + rac{1}{\epsilon^2} \cdot \log rac{1}{\delta}
ight).$$

- FatSHDim can be used to bound Rademacher mean width
- Rademacher mean width can be used to bound sample complexity

PAC Learning Expectations

Theorem (A., Benedikt)

If each $\mathcal{H} \in \mathcal{F}$ has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the expectation class $\mathbb{E}\mathcal{F}$ with sample complexity

$$O\left(rac{d}{\epsilon^4} \cdot \log^2 rac{d}{\epsilon} + rac{1}{\epsilon^2} \cdot \log rac{1}{\delta}
ight).$$

- FatSHDim can be used to bound Rademacher mean width
- Rademacher mean width can be used to bound sample complexity
- Adapt Ben Yaacov's proof that *Gaussian* mean width is preserved under randomization

	PAC Learning 000	Randomization 000	Online Learning ●000
Online L	earning		
	carning		

• At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$

	PAC Learning	Randomization	Online Learning
	000	000	●000
Online Le	earning		

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

PAC Learning	Randomization	Online Learning
000	000	●000

• At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$

Online Learning

• Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• The adversary tells you y_i , penalizes you $|y_i - y'_i|$

PAC Learning	Online Learning
	0000

Online Learning

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)
- The adversary tells you y_i , penalizes you $|y_i y'_i|$
- After n steps, compare to the best strategy y'_i = h(x_i) for h ∈ H.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• Call the difference in penalty the regret.

PAC Learning	Online Learning
	0000

Online Learning

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)
- The adversary tells you y_i , penalizes you $|y_i y_i'|$
- After n steps, compare to the best strategy y'_i = h(x_i) for h ∈ H.
- Call the difference in penalty the *regret*.
- \mathcal{H} is online learnable if whatever the adversary does, regret is sublinear in n.

PAC Learning	Online Learning
	0000

Online Learning Bounds

To bound regret in online learning, replace our existing notions with *sequential* versions, replacing subsets $E \subseteq \{1, ..., n\}$ with branches of a binary tree of depth n:

Theorem (Rakhlin, Sridharan, Tewari)

Finite γ -sequential-fat-shattering dimension is equivalent to online learnability, with bounds given.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Their proof goes through sequential Rademacher mean width.

Our Online Learning Results

Theorem (A., Benedikt)

- Stability in continuous logic is equivalent to finite γ -sequential-fat-shattering dimension for all $\gamma > 0$.
- Sequential Rademacher mean width, and thus online learnability, is preserved under randomization.

Theorem (A., Benedikt)

The minimax regret of online learning for the randomization class of \mathcal{H} with γ -sequential-fat-shattering dimension at most d on a run of length n is at most

$$4 \cdot \gamma \cdot n + 12 \cdot (1 - \gamma) \cdot \sqrt{d \cdot n \cdot \log\left(\frac{2 \cdot e \cdot n}{\gamma}\right)}.$$

・ロト・西ト・モート ヨー うらぐ

PAC Learning	Randomization	Online Learning
000	000	000●

Thank you!

For downloadable slides, see

https://awainverse.github.io/talks/learningrandom/

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

For valued fields enthusiasts: Talk to me about RCMVF.