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Model Theory to Learnability

o Let C ={c, : y € Y} be a class of subsets of X indexed by Y.

o C is NIP/stable when there is an NIP /stable formula ¢(x; y)
such that x € ¢, <= ¢(x;y).

o The properties in each row are equivalent:

Model Theory ‘ Combinatorics ‘ Learning Theory

NIP finite VC dimension PAC learnable
stable finite Littlestone dimension | online learnable




Intro
oeo

Continuous Logic to Learnability

o Let H={h, : y € Y} be a class of functions X — [0, 1]
indexed by Y.



Intro
oeo

Continuous Logic to Learnability

o Let H={h, : y € Y} be a class of functions X — [0, 1]
indexed by Y.

o H is NIP/stable when there is an NIP /stable formula ¢(x; y)
of continuous logic such that hy,(x) = ¢(x; y).



Intro
oeo

Continuous Logic to Learnability

o Let H={h, : y € Y} be a class of functions X — [0, 1]
indexed by Y.

o H is NIP/stable when there is an NIP /stable formula ¢(x; y)
of continuous logic such that hy,(x) = ¢(x; y).

o The properties in the table have been generalized to H, but
the connections are understudied.
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New Learnable Function Classes

Theorem (A., Benedikt)

A class H of functions X — [0, 1] is stable iff it is online learnable.
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New Learnable Function Classes

Theorem (A., Benedikt)

A class H of functions X — [0, 1] is stable iff it is online learnable.

Theorem (A., Benedikt)

The randomization of a PAC/online learnable function class H is
also PAC/online learnable.
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Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula ¢ of continuous logic is NIP iff the class of functions it
defines has finite y-fat-shattering dimension for all v > 0.




PAC Learning
®00

Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula ¢ of continuous logic is NIP iff the class of functions it
defines has finite y-fat-shattering dimension for all v > 0.

Definition
Let H be a class of functions X — [0,1] and let v > 0. We say H
has y-fat-shattering dimension at least n when there are

0 X1,...,Xp €X

o si,...,8, €[0,1]

o For every E C {1,...,n}, a function hg € H satisfying

o if i € E, hE(X;)ZSi+’Y
Q Ifl%E, hE(X,')SS,'f’)/.
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o with probability at least 1 — 6,
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A class H of functions X — [0, 1] is PAC learnable when for every
€,0 > 0, there is n such that when. ..

o (X1,¥1)s .-, (Xn, ¥n) € X x[0,1] are i.i.d. random,

o we can choose h € H (hoping that h(x,4+1) & yn+1) such that
with probability at least 1 — ¢,

E [|yn+1 — h(xn+1)]] is within € of the best case for all h € H.
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Probably Approximately Correct Learning

A class H of functions X — [0, 1] is PAC learnable when for every
€,0 > 0, there is n such that when. ..

o (X1,¥1)s .-, (Xn, ¥n) € X x[0,1] are i.i.d. random,

o we can choose h € H (hoping that h(x,4+1) & yn+1) such that
with probability at least 1 — ¢,

E [|yn+1 — h(xn+1)]] is within € of the best case for all h € H.

©

©

We call n = n(e,0) the sample complexity.
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PAC Learning Bound

Theorem (Bartlett, Long)
The sample complexity n(e, ) of PAC-learning H is bounded by

o (w0 (1) ()

In fact, H is PAC-learnable if and only if the ~y-fat-shattering
dimension is finite for all v > 0.

Hu et al. extended this to learning a class of measures on H, at
the cost of a much worse bound.
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PAC Learning Bound

Theorem (Bartlett, Long)
The sample complexity n(e, ) of PAC-learning H is bounded by

o (w0 (1) ()

In fact, H is PAC-learnable if and only if the ~y-fat-shattering
dimension is finite for all v > 0.

Hu et al. extended this to learning a class of measures on H, at
the cost of a much worse bound.

We'll use continuous logic to find examples of learnable classes and
improve the Hu et al. bound.
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The Expectation Class

Suppose (2, X, (1) is a probability space and F = (H,, : w € Q) is
a family of function classes H,, = (hy,, 1 y € Y).

Definition

Assuming measurability, define EF, : X — [0, 1] by

EFy(x) = E[hoy (x)]-

We call the class EF = {EF, : y € Y} the expectation class of F.
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The Expectation Class

Suppose (2, X, (1) is a probability space and F = (H,, : w € Q) is
a family of function classes H,, = (hy,, 1 y € Y).

Definition

Assuming measurability, define EF, : X — [0, 1] by

EFy(x) = E[hoy (x)]-

We call the class EF = {EF, : y € Y} the expectation class of F.

Think of EF and every H,, as a class of functions h: X — [0, 1]
indexed by Y.
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The Randomization

If the classes H € F are uniformly definable in some structure M,
then EF is definable in a structure MR (of continuous logic) called
the randomization of M, whose elements are M-valued random

variables.

Theorem (Ben Yaacov, Keisler)
o If F is uniformly NIP/stable, then EF is NIP/stable.
o If a structure M is NIP/stable, then MR is NIP /stable.
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PAC Learning Expectations

Theorem (A., Benedikt)

If each H € F has FatSHDim < () < d, one can PAC learn the
expectation class EF with sample complexity

d d 1 1
— -log? =+ = -log = | .
O<64 og 6+62 og5>
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PAC Learning Expectations

Theorem (A., Benedikt)

If each H € F has FatSHDim < () < d, one can PAC learn the
expectation class EF with sample complexity

d d 1 1
— -log? =+ = -log = | .
O<64 og 6+62 og5>

o FatSHDim can be used to bound Rademacher mean width

o Rademacher mean width can be used to bound sample
complexity

o Adapt Ben Yaacov's proof that Gaussian mean width is
preserved under randomization
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Call the difference in penalty the regret.
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©

At step i, an adversary chooses (x;j,y;) € X x [0, 1]

©

Given x;, you guess y! ~ y; (you can use randomness)

o The adversary tells you y;, penalizes you |y; — y/|

o After n steps, compare to the best strategy y/ = h(x;) for
heH.

o Call the difference in penalty the regret.

o H is online learnable if whatever the adversary does, regret is

sublinear in n.
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Online Learning Bounds

To bound regret in online learning, replace our existing notions
with sequential versions, replacing subsets E C {1,...,n} with
branches of a binary tree of depth n:

Theorem (Rakhlin, Sridharan, Tewari)

Finite ~y-sequential-fat-shattering dimension is equivalent to online
learnability, with bounds given.

Their proof goes through sequential Rademacher mean width.
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Our Online Learning Results

Theorem (A., Benedikt)

o Stability in continuous logic is equivalent to finite
~v-sequential-fat-shattering dimension for all v > 0.

o Sequential Rademacher mean width, and thus online
learnability, is preserved under randomization.

\.

Theorem (A., Benedikt)

The minimax regret of online learning for the randomization class
of H with y-sequential-fat-shattering dimension at most d on a
run of length n is at most

2.¢.
4.'y-n+12.(17)-\/d-n-|og< € n>‘
Y
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Thank you!

For downloadable slides, see
https://awainverse.github.io/talks/learningrandom/

For valued fields enthusiasts: Talk to me about RCMVF.
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