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Probably Approximately Correct Learning

A class H of functions X — [0, 1] is PAC learnable when

o for every €, > 0, there is n such that,
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o for every €, > 0, there is n such that,
o given i.i.d. random (x1,y1), ..., (Xn, ¥n) € X x [0,1],
o we can choose h € H (with h(x;) = y;), such that
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Probably Approximately Correct Learning

A class H of functions X — [0, 1] is PAC learnable when

for every ,0 > 0, there is n such that,

©

given i.i.d. random (x1,¥1), ..., (Xn, ¥n) € X x [0,1],

we can choose h € H (with h(x;) ~ y;), such that

with probability at least 1 — ¢,

E [|h(xn+1) — ¥n+1|] is within e of the best case for all h € H.
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Model Theory to Learnability

o Let M be a structure, ¢(x;y) a formula.
o Define H = {¢(x; b) : b € MY}, where ¢(x; b) : M* — {0, 1}.
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Model Theory to Learnability

o Let M be a structure, ¢(x;y) a formula.
o Define H = {¢(x; b) : b € MY}, where ¢(x; b) : M* — {0, 1}.

The properties in each row are equivalent:

Model Theory ‘ Combinatorics ‘ Learning Theory
¢ is NIP finite VC dimension PAC learnable
¢ Is stable finite Littlestone dimension | online learnable
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Model Theory to Learnability

o Let M be a structure, ¢(x;y) a formula.
o Define H = {¢(x; b) : b € MY}, where ¢(x; b) : M* — {0, 1}.

The properties in each row are equivalent:

Model Theory ‘ Combinatorics ‘ Learning Theory
¢ is NIP finite VC dimension PAC learnable
¢ Is stable finite Littlestone dimension | online learnable

o This gives us many learnable classes of {0, 1}-valued functions.
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Continuous Logic

o Continuous logic lets ¢(x; y) define [0, 1]-valued functions.

o The properties from the table generalize, and remain equivalent:
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Continuous Logic

o Continuous logic lets ¢(x; y) define [0, 1]-valued functions.

o The properties from the table generalize, and remain equivalent:

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to online learnability.

o To construct some continuous logic formulas, use randomization. . .
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The Randomization

The randomization of ¢(x; y) is the class of [0, 1]-valued functions
o on the set of random variables x on M*
o indexed by random variables y on MY
o defined by

x = Plo(x, y)].

September 27, 2025 5/6

Aaron Anderson (UPenn) Continuous Logic and Learning Bounds



The Randomization

Definition

The randomization of ¢(x; y) is the class of [0, 1]-valued functions
o on the set of random variables x on M*
o indexed by random variables y on MY
o defined by

x = Plo(x, y)].

Fact (Ben Yaacov, Keisler)

Randomization preserves NIP, stability (in continuous logic).
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The Randomization

Definition
The randomization of ¢(x; y) is the class of [0, 1]-valued functions
o on the set of random variables x on M*
o indexed by random variables y on MY
o defined by
x = Plo(x, y)].

Fact (Ben Yaacov, Keisler)

Randomization preserves NIP, stability (in continuous logic).

Theorem (A., Benedikt)

Randomization preserves PAC/online learnability, with explicit bounds.
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Thank you, MAMLS!
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Generalizing VC Dimension to Continuous Logic

NIP in continuous logic means finite ~-fat-shattering dimension for every
v > 0:

Let H be a class of functions X — [0,1] and let v > 0. We say H has
~-fat-shattering dimension at least n when there are

O X1,...,Xp € X
o functions hg € H for each E C {1,..., n} satisfying

hey(xi) + v < he (x7)

whenever x; € Eg, x; € E;.

Sequential fat-shattering dimension replaces subsets E C {1,..., n} with
branches of a binary tree of depth n.
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