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Probably Approximately Correct Learning

A class H of functions X → [0, 1] is PAC learnable when

for every ε, δ > 0, there is n such that,

given i.i.d. random (x1, y1), . . . , (xn, yn) ∈ X × [0, 1],

we can choose h ∈ H (with h(xi ) ≈ yi ), such that

with probability at least 1− δ,

E [|h(xn+1)− yn+1|] is within ε of the best case for all h ∈ H.
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Model Theory to Learnability

Let M be a structure, φ(x ; y) a formula.

Define H = {φ(x ; b) : b ∈ My}, where φ(x ; b) : Mx → {0, 1}.

Fact

The properties in each row are equivalent:

Model Theory Combinatorics Learning Theory

φ is NIP finite VC dimension PAC learnable
φ is stable finite Littlestone dimension online learnable

This gives us many learnable classes of {0, 1}-valued functions.
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Continuous Logic

Continuous logic lets φ(x ; y) define [0, 1]-valued functions.

The properties from the table generalize, and remain equivalent:

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to online learnability.

To construct some continuous logic formulas, use randomization. . .

Aaron Anderson (UPenn) Continuous Logic and Learning Bounds September 27, 2025 4 / 6



Continuous Logic

Continuous logic lets φ(x ; y) define [0, 1]-valued functions.

The properties from the table generalize, and remain equivalent:

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to online learnability.

To construct some continuous logic formulas, use randomization. . .

Aaron Anderson (UPenn) Continuous Logic and Learning Bounds September 27, 2025 4 / 6



Continuous Logic

Continuous logic lets φ(x ; y) define [0, 1]-valued functions.

The properties from the table generalize, and remain equivalent:

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to online learnability.

To construct some continuous logic formulas, use randomization. . .

Aaron Anderson (UPenn) Continuous Logic and Learning Bounds September 27, 2025 4 / 6



The Randomization

Definition

The randomization of φ(x ; y) is the class of [0, 1]-valued functions

on the set of random variables x on Mx

indexed by random variables y on My

defined by
x 7→ P[φ(x, y)].

Fact (Ben Yaacov, Keisler)

Randomization preserves NIP, stability (in continuous logic).

Theorem (A., Benedikt)

Randomization preserves PAC/online learnability, with explicit bounds.
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Thank you, MAMLS!
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Generalizing VC Dimension to Continuous Logic

NIP in continuous logic means finite γ-fat-shattering dimension for every
γ > 0:

Definition

Let H be a class of functions X → [0, 1] and let γ > 0. We say H has
γ-fat-shattering dimension at least n when there are

x1, . . . , xn ∈ X

functions hE ∈ H for each E ⊆ {1, . . . , n} satisfying

hE0(xi ) + γ ≤ hE1(xi )

whenever xi 6∈ E0, xi ∈ E1.

Sequential fat-shattering dimension replaces subsets E ⊆ {1, . . . , n} with
branches of a binary tree of depth n.
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