Continuous Logic and Learning Bounds

Aaron Anderson (joint with Michael Benedikt)

UPenn

September 27, 2025

A class $\mathcal H$ of functions $X \to [0,1]$ is PAC learnable when \bullet for every $\varepsilon, \delta > 0$, there is n such that,

A class $\mathcal H$ of functions X o [0,1] is PAC learnable when

- for every $\varepsilon, \delta > 0$, there is n such that,
- ullet given i.i.d. random $(x_1,y_1),\ldots,(x_n,y_n)\in X imes [0,1]$,

A class \mathcal{H} of functions $X \to [0,1]$ is PAC learnable when

- for every $\varepsilon, \delta > 0$, there is n such that,
- given i.i.d. random $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$,
- we can choose $h \in \mathcal{H}$ (with $h(x_i) \approx y_i$), such that

A class \mathcal{H} of functions $X \to [0,1]$ is PAC learnable when

- for every $\varepsilon, \delta > 0$, there is n such that,
- given i.i.d. random $(x_1, y_1), ..., (x_n, y_n) \in X \times [0, 1]$,
- we can choose $h \in \mathcal{H}$ (with $h(x_i) \approx y_i$), such that
- ullet with probability at least $1-\delta$,

A class $\mathcal H$ of functions X o [0,1] is PAC learnable when

- for every $\varepsilon, \delta > 0$, there is n such that,
- given i.i.d. random $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$,
- we can choose $h \in \mathcal{H}$ (with $h(x_i) \approx y_i$), such that
- with probability at least 1δ ,
- $\mathbb{E}[|h(x_{n+1}) y_{n+1}|]$ is within ε of the best case for all $h \in \mathcal{H}$.

Model Theory to Learnability

- Let M be a structure, $\phi(x; y)$ a formula.
- Define $\mathcal{H} = \{\phi(x; b) : b \in M^y\}$, where $\phi(x; b) : M^x \to \{0, 1\}$.

Model Theory to Learnability

- Let M be a structure, $\phi(x; y)$ a formula.
- Define $\mathcal{H} = \{\phi(x; b) : b \in M^{\mathcal{Y}}\}$, where $\phi(x; b) : M^{\mathcal{X}} \to \{0, 1\}$.

Fact

The properties in each row are equivalent:

Model Theory	Combinatorics	Learning Theory
ϕ is NIP	finite VC dimension	PAC learnable
ϕ is stable	finite Littlestone dimension	online learnable

Model Theory to Learnability

- Let M be a structure, $\phi(x; y)$ a formula.
- Define $\mathcal{H} = \{\phi(x; b) : b \in M^{\mathcal{Y}}\}$, where $\phi(x; b) : M^{\mathcal{X}} \to \{0, 1\}$.

Fact

The properties in each row are equivalent:

Model Theory	Combinatorics	Learning Theory
ϕ is NIP	finite VC dimension	PAC learnable
ϕ is stable	finite Littlestone dimension	online learnable

• This gives us many learnable classes of $\{0,1\}$ -valued functions.

Continuous Logic

- Continuous logic lets $\phi(x; y)$ define [0, 1]-valued functions.
- The properties from the table generalize, and remain equivalent:

Continuous Logic

- Continuous logic lets $\phi(x; y)$ define [0, 1]-valued functions.
- The properties from the table generalize, and remain equivalent:

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to online learnability.

Continuous Logic

- Continuous logic lets $\phi(x; y)$ define [0, 1]-valued functions.
- The properties from the table generalize, and remain equivalent:

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to online learnability.

To construct some continuous logic formulas, use randomization...

The Randomization

Definition

The randomization of $\phi(x;y)$ is the class of [0,1]-valued functions

- \circ on the set of random variables **x** on M^{\times}
- indexed by random variables \mathbf{y} on M^y
- defined by

$$\mathbf{x}\mapsto \mathbb{P}[\phi(\mathbf{x},\mathbf{y})].$$

The Randomization

Definition

The *randomization* of $\phi(x; y)$ is the class of [0, 1]-valued functions

- \circ on the set of random variables **x** on M^{\times}
- \circ indexed by random variables **y** on M^y
- defined by

$$\mathbf{x}\mapsto \mathbb{P}[\phi(\mathbf{x},\mathbf{y})].$$

Fact (Ben Yaacov, Keisler)

Randomization preserves NIP, stability (in continuous logic).

The Randomization

Definition

The *randomization* of $\phi(x; y)$ is the class of [0, 1]-valued functions

- \circ on the set of random variables **x** on M^{\times}
- indexed by random variables \mathbf{y} on M^y
- defined by

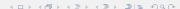
$$\mathbf{x}\mapsto \mathbb{P}[\phi(\mathbf{x},\mathbf{y})].$$

Fact (Ben Yaacov, Keisler)

Randomization preserves NIP, stability (in continuous logic).

Theorem (A., Benedikt)

Randomization preserves PAC/online learnability, with explicit bounds.



Thank you, MAMLS!

Generalizing VC Dimension to Continuous Logic

NIP in continuous logic means finite γ -fat-shattering dimension for every $\gamma>0$:

Definition

Let \mathcal{H} be a class of functions $X \to [0,1]$ and let $\gamma > 0$. We say \mathcal{H} has γ -fat-shattering dimension at least n when there are

- \circ $x_1,\ldots,x_n\in X$
- functions $h_E \in \mathcal{H}$ for each $E \subseteq \{1, \dots, n\}$ satisfying

$$h_{E_0}(x_i) + \gamma \leq h_{E_1}(x_i)$$

whenever $x_i \notin E_0, x_i \in E_1$.

Sequential fat-shattering dimension replaces subsets $E \subseteq \{1, ..., n\}$ with branches of a binary tree of depth n.

