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Model Theory to Learnability

Let C = {cy : y ∈ Y } be a class of subsets of X indexed by Y .

C is NIP/stable when there is an NIP/stable formula φ(x ; y)
such that x ∈ cy ⇐⇒ φ(x ; y).

The properties in each row are equivalent:

Model Theory Combinatorics Learning Theory

NIP finite VC dimension PAC learnable
stable finite Littlestone dimension online learnable
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Continuous Logic to Learnability

Let H = {hy : y ∈ Y } be a class of functions X → [0, 1]
indexed by Y .

H is NIP/stable when there is an NIP/stable formula φ(x ; y)
of continuous logic such that hy (x) = φ(x ; y).

The properties in the table have been generalized to H, but
the connections are understudied.
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New Learnable Function Classes

Theorem (A., Benedikt)

A class H of functions X → [0, 1] is stable iff it is online learnable.

Theorem (A., Benedikt)

The randomization of a PAC/online learnable function class H is
also PAC/online learnable.
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Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula φ of continuous logic is NIP iff the class of functions it
defines has finite γ-fat-shattering dimension for all γ > 0.

Definition

Let H be a class of functions X → [0, 1] and let γ > 0. We say H
has γ-fat-shattering dimension at least n when there are

x1, . . . , xn ∈ X

s1, . . . , sn ∈ [0, 1]

For every E ⊆ {1, . . . , n}, a function hE ∈ H satisfying

if i ∈ E , hE (xi ) ≥ si + γ
if i 6∈ E , hE (xi ) ≤ si − γ.
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Probably Approximately Correct Learning

A class H of functions X → [0, 1] is PAC learnable when for every
ε, δ > 0, there is n such that when. . .

(x1, y1), . . . , (xn, yn) ∈ X × [0, 1] are i.i.d. random,

we can choose h ∈ H (hoping that h(xn+1) ≈ yn+1) such that

with probability at least 1− δ,

E [|yn+1 − h(xn+1)|] is within ε of the best case for all h ∈ H.

We call n = n(ε, δ) the sample complexity.
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Previous PAC Learning Results

Theorem (Bartlett, Long)

H is PAC-learnable if and only if the γ-fat-shattering dimension is
finite for all γ > 0.
Sample complexity n(ε, δ) is bounded by

O

(
1

ε2
·
(
FatSHDim ε

9
(H) · log2

(
1

ε

)
+ log

(
1

δ

)))
Hu et al. extended this to learning a class of measures on H, at
the cost of a much worse bound.
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The Randomization

Definition

If a class H of functions X → [0, 1], indexed by Y , is given by a
continuous logic formula φ(x ; y), then the randomization of H is
the class of functions

on the set of random variables on X

indexed by random variables on Y

defined by
E[φ(x , y)].

Theorem (Ben Yaacov, Keisler)

If H is NIP/stable, so is its randomization.
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PAC Learning The Randomization

Theorem (A., Benedikt)

If H has FatSHDim ε
50

(H) ≤ d , one can PAC learn the
randomization class of H with sample complexity

O

(
d

ε4
· log2

d

ε
+

1

ε2
· log

1

δ

)
.

FatSHDim can be used to bound Rademacher mean width

Rademacher mean width can be used to bound sample
complexity

Adapt Ben Yaacov’s proof that Gaussian mean width is
preserved under randomization
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Online Learning

At step i , an adversary chooses (xi , yi ) ∈ X × [0, 1]

Given xi , you guess y ′i ≈ yi (you can use randomness)

The adversary tells you yi , penalizes you |yi − y ′i |
After n steps, compare to the best strategy y ′i = h(xi ) for
h ∈ H.

Call the difference in penalty the regret.

H is online learnable if whatever the adversary does, regret is
sublinear in n.
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Online Learning Bounds

To bound regret in online learning, replace our existing notions
with sequential versions, replacing subsets E ⊆ {1, . . . , n} with
branches of a binary tree of depth n:

Theorem (Rakhlin, Sridharan, Tewari)

Finite γ-sequential-fat-shattering dimension is equivalent to online
learnability, with bounds given.

Their proof goes through sequential Rademacher mean width.
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Our Online Learning Results

Theorem (A., Benedikt)

Stability in continuous logic is equivalent to finite
γ-sequential-fat-shattering dimension for all γ > 0.

Sequential Rademacher mean width, and thus online
learnability, is preserved under randomization.

Theorem (A., Benedikt)

The minimax regret of online learning for the randomization class
of H with γ-sequential-fat-shattering dimension at most d on a
run of length n is at most

4 · γ · n + 12 · (1− γ) ·

√
d · n · log

(
2 · e · n
γ

)
.
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Thank you, NEMTD!
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