<ロト < 回ト < 巨ト < 巨ト < 巨ト 三目 のへで

Continuous Logic and Learning Bounds

Aaron Anderson

UPenn

April 5, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣��

Model Theory to Learnability

• Let $C = \{c_y : y \in Y\}$ be a class of subsets of X indexed by Y.

*ロ * * @ * * ミ * ミ * ・ ミ * の (~

Model Theory to Learnability

- Let $C = \{c_y : y \in Y\}$ be a class of subsets of X indexed by Y.
- C is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ such that $x \in c_y \iff \phi(x; y)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Model Theory to Learnability

- Let $C = \{c_y : y \in Y\}$ be a class of subsets of X indexed by Y.
- C is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ such that $x \in c_y \iff \phi(x; y)$.
- The properties in each row are equivalent:

Model Theory	Combinatorics	Learning Theory
NIP	finite VC dimension	PAC learnable
stable	finite Littlestone dimension	online learnable

▲□▶▲□▶▲≡▶▲≡▶ = ●の00

Continuous Logic to Learnability

Let H = {h_y : y ∈ Y} be a class of functions X → [0,1] indexed by Y.

▲□▶▲□▶▲≡▶▲≡▶ = ●の00

Continuous Logic to Learnability

- Let H = {h_y : y ∈ Y} be a class of functions X → [0,1] indexed by Y.
- \mathcal{H} is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ of continuous logic such that $h_y(x) = \phi(x; y)$.

Continuous Logic to Learnability

- Let H = {h_y : y ∈ Y} be a class of functions X → [0,1] indexed by Y.
- \mathcal{H} is NIP/stable when there is an NIP/stable formula $\phi(x; y)$ of continuous logic such that $h_y(x) = \phi(x; y)$.
- The properties in the table have been generalized to \mathcal{H} , but the connections are understudied.

▲□▶▲□▶▲≡▶▲≡▶ = ●の00

New Learnable Function Classes

Theorem (A., Benedikt)

A class \mathcal{H} of functions $X \to [0,1]$ is stable iff it is online learnable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

New Learnable Function Classes

Theorem (A., Benedikt)

A class \mathcal{H} of functions $X \to [0,1]$ is stable iff it is online learnable.

Theorem (A., Benedikt)

The randomization of a PAC/online learnable function class $\mathcal H$ is also PAC/online learnable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula ϕ of continuous logic is NIP iff the class of functions it defines has finite γ -fat-shattering dimension for all $\gamma > 0$.

Generalizing VC Dimension to Continuous Logic

Theorem (Ben Yaacov)

A formula ϕ of continuous logic is NIP iff the class of functions it defines has finite γ -fat-shattering dimension for all $\gamma > 0$.

Definition

Let \mathcal{H} be a class of functions $X \to [0, 1]$ and let $\gamma > 0$. We say \mathcal{H} has γ -fat-shattering dimension at least n when there are

•
$$x_1, \ldots, x_n \in X$$

• $s_1, \ldots, s_n \in [0, 1]$
• For every $E \subseteq \{1, \ldots, n\}$, a function $h_E \in \mathcal{H}$ satisfying
• if $i \in E$, $h_E(x_i) \ge s_i + \gamma$
• if $i \notin E$, $h_E(x_i) \le s_i - \gamma$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Probably Approximately Correct Learning

A class $\mathcal H$ of functions $X\to [0,1]$ is PAC learnable when for every $\varepsilon,\delta>0,$ there is n such that when...

• $(x_1, y_1), ..., (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,

Probably Approximately Correct Learning

A class $\mathcal H$ of functions $X\to[0,1]$ is PAC learnable when for every $\varepsilon,\delta>0,$ there is n such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that

Probably Approximately Correct Learning

A class $\mathcal H$ of functions $X\to [0,1]$ is PAC learnable when for every $\varepsilon,\delta>0,$ there is n such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least $1-\delta$,

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least 1δ ,
- $\mathbb{E}[|y_{n+1} h(x_{n+1})|]$ is within ε of the best case for all $h \in \mathcal{H}$.

Probably Approximately Correct Learning

A class \mathcal{H} of functions $X \to [0, 1]$ is PAC learnable when for every $\varepsilon, \delta > 0$, there is *n* such that when...

- $(x_1, y_1), \ldots, (x_n, y_n) \in X \times [0, 1]$ are i.i.d. random,
- we can choose $h \in \mathcal{H}$ (hoping that $h(x_{n+1}) \approx y_{n+1}$) such that
- with probability at least 1δ ,

• $\mathbb{E}[|y_{n+1} - h(x_{n+1})|]$ is within ε of the best case for all $h \in \mathcal{H}$. We call $n = n(\varepsilon, \delta)$ the sample complexity.

Previous PAC Learning Results

Theorem (Bartlett, Long)

 \mathcal{H} is PAC-learnable if and only if the γ -fat-shattering dimension is finite for all $\gamma > 0$. Sample complexity $n(\varepsilon, \delta)$ is bounded by

 $O\left(\frac{1}{\epsilon^2} \cdot \left(\operatorname{FatSHDim}_{\frac{\epsilon}{9}}\left(\mathcal{H}\right) \cdot \log^2\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$

Hu et al. extended this to learning a class of measures on \mathcal{H} , at the cost of a much worse bound.

・ロト < 同ト < 三ト < 三ト < 三 ・ つんの
</p>

The Randomization

Definition

If a class \mathcal{H} of functions $X \to [0, 1]$, indexed by Y, is given by a continuous logic formula $\phi(x; y)$, then the *randomization* of \mathcal{H} is the class of functions

- on the set of random variables on X
- indexed by random variables on Y
- o defined by

 $\mathbb{E}[\phi(x,y)].$

Theorem (Ben Yaacov, Keisler)

If \mathcal{H} is NIP/stable, so is its randomization.

PAC Learning The Randomization

Theorem (A., Benedikt)

If \mathcal{H} has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the randomization class of \mathcal{H} with sample complexity

$$O\left(\frac{d}{\epsilon^4} \cdot \log^2 \frac{d}{\epsilon} + \frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta}\right).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PAC Learning The Randomization

Theorem (A., Benedikt)

If \mathcal{H} has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the randomization class of \mathcal{H} with sample complexity

$$O\left(\frac{d}{\epsilon^4} \cdot \log^2 \frac{d}{\epsilon} + \frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta}\right).$$

• FatSHDim can be used to bound Rademacher mean width

PAC Learning The Randomization

Theorem (A., Benedikt)

If \mathcal{H} has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the randomization class of \mathcal{H} with sample complexity

$$O\left(rac{d}{\epsilon^4} \cdot \log^2 rac{d}{\epsilon} + rac{1}{\epsilon^2} \cdot \log rac{1}{\delta}
ight).$$

- FatSHDim can be used to bound Rademacher mean width
- Rademacher mean width can be used to bound sample complexity

PAC Learning The Randomization

Theorem (A., Benedikt)

If \mathcal{H} has $\operatorname{FatSHDim}_{\frac{\epsilon}{50}}(\mathcal{H}) \leq d$, one can PAC learn the randomization class of \mathcal{H} with sample complexity

$$O\left(rac{d}{\epsilon^4} \cdot \log^2 rac{d}{\epsilon} + rac{1}{\epsilon^2} \cdot \log rac{1}{\delta}
ight).$$

- FatSHDim can be used to bound Rademacher mean width
- Rademacher mean width can be used to bound sample complexity
- Adapt Ben Yaacov's proof that *Gaussian* mean width is preserved under randomization

	PAC Learning 00000	Online Learning ●000
Online Learning		

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

• At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)

▲□▶▲□▶▲≡▶▲≡▶ = ●の00

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)
- The adversary tells you y_i , penalizes you $|y_i y'_i|$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)
- The adversary tells you y_i , penalizes you $|y_i y_i'|$
- After n steps, compare to the best strategy y'_i = h(x_i) for h ∈ H.
- Call the difference in penalty the *regret*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- At step *i*, an adversary chooses $(x_i, y_i) \in X \times [0, 1]$
- Given x_i , you guess $y'_i \approx y_i$ (you can use randomness)
- The adversary tells you y_i , penalizes you $|y_i y_i'|$
- After n steps, compare to the best strategy y'_i = h(x_i) for h ∈ H.
- Call the difference in penalty the regret.
- \mathcal{H} is online learnable if whatever the adversary does, regret is sublinear in n.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Online Learning Bounds

To bound regret in online learning, replace our existing notions with *sequential* versions, replacing subsets $E \subseteq \{1, ..., n\}$ with branches of a binary tree of depth n:

Theorem (Rakhlin, Sridharan, Tewari)

Finite γ -sequential-fat-shattering dimension is equivalent to online learnability, with bounds given.

Their proof goes through sequential Rademacher mean width.

Our Online Learning Results

Theorem (A., Benedikt)

- Stability in continuous logic is equivalent to finite γ -sequential-fat-shattering dimension for all $\gamma > 0$.
- Sequential Rademacher mean width, and thus online learnability, is preserved under randomization.

Theorem (A., Benedikt)

The minimax regret of online learning for the randomization class of \mathcal{H} with γ -sequential-fat-shattering dimension at most d on a run of length n is at most

$$4 \cdot \gamma \cdot n + 12 \cdot (1 - \gamma) \cdot \sqrt{d \cdot n \cdot \log\left(\frac{2 \cdot e \cdot n}{\gamma}\right)}.$$

・ロト・西ト・ヨト・ ヨー うへぐ

Thank you, NEMTD!