Finding Order in Metric Structures

Aaron Anderson (joint with Diego Bejarano)

UPenn

September 23, 2025

Metric Structures

Definition

A *metric language* is just like a regular first-order language, consisting of functions and relations.

Definition

A metric structure consists of:

- ullet A complete metric space of diameter ≤ 1
- For each n-ary function symbol, a uniformly continuous function $M^n \to M$
- For each *n*-ary relation symbol, a uniformly continuous function $M^n \to [0,1]$

Formulas

Definition

An atomic formula is defined as usual, except instead of =, the basic relation is d(x, y).

Definition

A formula is

- An atomic formula
- $u(\phi_1,\ldots,\phi_n)$ where ϕ_i s are formulas and $u:[0,1]^n\to [0,1]$ is continuous
- $\sup_{\mathbf{x}} \phi$ or $\inf_{\mathbf{x}} \phi$

Making Linear Orders Metric

• Most famous examples of metric structures are stable or not NIP - how do we put an order on one?

Making Linear Orders Metric

- Most famous examples of metric structures are stable or not NIP - how do we put an order on one?
- Itaï Ben Yaacov has described Ordered Real Closed Metric Valued Fields, but making the metric space bounded complicated things.

Making Linear Orders Metric

- Most famous examples of metric structures are stable or not NIP - how do we put an order on one?
- Itaï Ben Yaacov has described Ordered Real Closed Metric Valued Fields, but making the metric space bounded complicated things.
- Diego Bejarano and I are working to simplify this approach.

Metric Linear Orders

- Call M a metric linear order if
 - ullet M has a complete metric of diameter ≤ 1
 - M has a linear order
 - open balls are order-convex.
- M is a metric structure in the language $\{r\}$, with

$$r(x,y) = \begin{cases} 0 & x \le y \\ d(x,y) & y \le x \end{cases}$$

• Think of r(x, y) as "the amount x is greater than y," or

$$r(x, y) = d(x, (\infty, y]).$$

Definition

A theory is a set of conditions $\phi(x) = 0$.

Definition

A theory is a set of conditions $\phi(x) = 0$.

Theorem (A., Bejarano)

Metric linear orders are axiomatized in $\{r\}$ by

$$\circ \sup_{x,y} |(r(x,y) + r(y,x)) - d(x,y)| = 0$$

Definition

A theory is a set of conditions $\phi(x) = 0$.

Theorem (A., Bejarano)

Metric linear orders are axiomatized in $\{r\}$ by

$$\circ \sup_{x,y} |(r(x,y) + r(y,x)) - d(x,y)| = 0$$

•
$$\sup_{x,y} \min\{r(x,y), r(y,x)\} = 0$$

Definition

A theory is a set of conditions $\phi(x) = 0$.

Theorem (A., Bejarano)

Metric linear orders are axiomatized in $\{r\}$ by

$$\circ \sup_{x,y} |(r(x,y) + r(y,x)) - d(x,y)| = 0$$

•
$$\sup_{x,y} \min\{r(x,y), r(y,x)\} = 0$$

•
$$\sup_{x,y,z} r(x,z) \dot{-} (r(x,y) + r(y,z)) = 0$$

• DLO and $\mathrm{Th}(\mathbb{Z},<)$ are two useful completions of the theory of linear orders

- DLO and $\mathrm{Th}(\mathbb{Z},<)$ are two useful completions of the theory of linear orders
- We seek analogous completions of MLO

- DLO and $\mathrm{Th}(\mathbb{Z},<)$ are two useful completions of the theory of linear orders
- We seek analogous completions of MLO
- For simplicity, assume the metric is an ultrametric.

Axiomatizing Ultrametric Dense Linear Orders

Definition

Let UDLO be the theory of *ultrametric-dense linear orders*, consisting of MLO with the following axioms:

- $o d(x,z) \leq \max(d(x,y),d(y,z))$
- For any rational $p \in \mathbb{Q} \cap [0,1]$, $\sup_{x} \inf_{y} |r(x,y) p| = 0$
- For any rational $p \in \mathbb{Q} \cap [0,1]$, $\sup_x \inf_y |r(y,x) p| = 0$.

Basically, the distances from x to y > x are dense in [0,1].

Stable Diversion: Dense Ultrametrics

Call an ultrametric space *dense* if the set of distances to any point is dense in [0,1].

Fact (Conant)

The theory of dense ultrametrics is complete and has QE, but is not \aleph_0 -categorical.

Stable Diversion: Dense Ultrametrics

Call an ultrametric space *dense* if the set of distances to any point is dense in [0,1].

Fact (Conant)

The theory of dense ultrametrics is complete and has QE, but is not \aleph_0 -categorical.

(A separable ultrametric space has countably many distances!)

Stable Diversion: Dense Ultrametrics

Call an ultrametric space *dense* if the set of distances to any point is dense in [0,1].

Fact (Conant)

The theory of dense ultrametrics is complete and has QE, but is not \aleph_0 -categorical.

(A separable ultrametric space has countably many distances!)

Lemma (A., Bejarano)

The theory of dense ultrametrics is the model companion of the theory of ultrametrics, and is approximately \aleph_0 -categorical.

Theorem (A., Bejarano)

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders
- UDLO is approximately ℵ₀-categorical

Theorem (A., Bejarano)

- UDLO is complete
- UDLO eliminates quantifiers
- UDLO is the model companion of the theory of ultrametric linear orders
- UDLO is approximately ℵ₀-categorical

Theorem (A., Bejarano)

In a model of UDLO,

- the metric and order topologies agree
- del is closure

• Let $S \subseteq (0,1]$ be countable, dense.

- Let $S \subseteq (0,1]$ be countable, dense.
- Let $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$

- Let $S \subseteq (0,1]$ be countable, dense.
- Let $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}$.
- Let $d(f, g) = \max\{x : f(x) \neq g(x)\}.$

- Let $S \subseteq (0,1]$ be countable, dense.
- Let $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$
- Let $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

- Let $S \subseteq (0,1]$ be countable, dense.
- Let $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}$.
- Let $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

Lemma (A., Bejarano)

 $U_S \vDash \mathsf{UDLO}$.

- Let $S \subseteq (0,1]$ be countable, dense.
- Let $U_S = \{f : S \to \mathbb{Q} : \forall r > 0, \{s > r : f(s) \neq 0\} \text{ is finite.} \}.$
- Let $d(f,g) = \max\{x : f(x) \neq g(x)\}.$
- Let f(x) < g(x) when f(d(f,g)) < g(d(f,g)).

Lemma (A., Bejarano)

 $U_S \vDash \mathsf{UDLO}$.

Theorem (Van Thé)

 U_S has extremely amenable automorphism group, following from Fraïssé theory in the **discrete-logic** language of ordered S-valued metric spaces.

o-Minimality in Discrete Logic

Fact

If M expands a linear order, TFAE:

- every formula $\phi(x)$ in one variable is qf-definable in $\{<\}$
- every formula $\phi(x)$ in one variable is a finite union of intervals.
- If these happen, M is o-minimal.

o-Minimality in Discrete Logic

Fact

If M expands a linear order, TFAE:

- every formula $\phi(x)$ in one variable is qf-definable in $\{<\}$
- every formula $\phi(x)$ in one variable is a finite union of intervals.
- If these happen, M is o-minimal.
- How do we describe these properties for MLOs?

Metric o-Minimality

Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every formula $\phi(x)$ in one variable is qf-definable in $\{r\}$
- every formula $\phi(x)$ in one variable is regulated (a uniform limit of step functions).

Metric o-Minimality

Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every formula $\phi(x)$ in one variable is qf-definable in $\{r\}$
- every formula $\phi(x)$ in one variable is regulated (a uniform limit of step functions).

Definition

If M expands a metric linear order, call M o-minimal if every formula $\phi(x)$ in one variable satisfies these equivalent properties.

Metric o-Minimality

Theorem (A., Bejarano)

If M expands a metric linear order, TFAE:

- every formula $\phi(x)$ in one variable is qf-definable in $\{r\}$
- every formula $\phi(x)$ in one variable is regulated (a uniform limit of step functions).

Definition

If M expands a metric linear order, call M o-minimal if every formula $\phi(x)$ in one variable satisfies these equivalent properties.

By QE, a model of UDLO is o-minimal.

Regulated Functions

Regulated functions $[a, b] \to \mathbb{R}$ were defined by Bourbaki.

Lemma (A. Bejarano)

If M is a linear order, $f: M \rightarrow [0,1]$, TFAE:

- 1 f is a uniform limit of step functions
- ② For any a < b, M can be partitioned into finitely many intervals on which either f(x) > a or f(x) < b.

If $M \models \mathsf{UDLO}$, and $f : M \to M$ is definable (d(f(x), y)) is a formula), then f is continuous and satisfies (2).

Metric Valued Fields

Definition

A metric valued field is a field K with an absolute value $|\cdot|: K \to \mathbb{R}^{\geq 0}$ satisfying valuation axioms:

$$|x| = 0 \iff x = 0$$

$$\bullet |xy| = |x||y|$$

$$|x+y| \leq \max(|x|,|y|)$$

which gives rise to an ultrametric d(x, y) = |x - y|.

Real Closed Metric Valued Fields

Definition

If K is a metric valued field equipped with an order, $K \equiv \mathbb{R}$ as ordered fields in classical logic, and $|\cdot|$ takes values outside $\{0,1\}$, call K a real closed metric valued field.

These are almost metric structures, but the metric is unbounded, a problem for continuous logic.

Metric Valued Fields, à Rideau-Kikuchi, Scanlon, Simon

- Typically we just deal with the ball $B_{<1}(0)$.
- For a metric valued field K, $\{x \in K : |x| \le 1\}$ is a subring the *valuation ring*.
- This is a metric structure in the ring language.

Metric Valued Fields, à Rideau-Kikuchi, Scanlon, Simon

- Typically we just deal with the ball $B_{<1}(0)$.
- For a metric valued field K, $\{x \in K : |x| \le 1\}$ is a subring the *valuation ring*.
- This is a metric structure in the ring language.
- Unfortunately, these are elementarily equivalent to other convex subrings of metric valued fields.

Ordered Real Closed Metric Valuation Rings

Theorem (A., Bejarano)

- Models of our theory ORCMVR are convex subrings of real closed metric valued fields.
- These have quantifier-elimination once we add a divisibility relation.
- These can only be weakly o-minimal.

Real Closed Metric Valued Fields à Ben Yaacov

Itaï Ben Yaacov studied the projective line instead

Real Closed Metric Valued Fields à Ben Yaacov

- Itaï Ben Yaacov studied the projective line instead
- Artem was right we need to view these as cyclic orders

Real Closed Metric Valued Fields à Ben Yaacov

- Itaï Ben Yaacov studied the projective line instead
- Artem was right we need to view these as cyclic orders

Theorem (A., Bejarano)

Any model of ORCMVF (the projective line) is an o-minimal expansion of a model of UDCO, the complete theory of ultrametric dense cyclic orders.

Thank you, UMD!