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1 Crossing Numbers

Before we get into incidence combinatorics proper, we will develop some tools in graph theory. In
particular, we need to understand what it means for a graph to be planar, and then we will start to
measure how unplanar a graph is.

Starting from the top, for this class, a graph consists of a (finite) vertex set V and an (also finite)
edge set E, where each element of E is an unordered pair of distinct elements of V . We typically
visualize graphs by drawing the vertices in V as points in the plane, and for each edge (v, w), drawing
a curve between v and w. Such a drawing is called planar when none of the edges cross each other,
and the graph itself is called planar when there is some planar way to draw it.

Any planar drawing of a graph breaks the plane into 2d regions known as faces. Our main tool
for planar graphs is Euler’s Formula, which relates the numbers of vertices, edges, and faces. To
state it, I need to cover one more definition: A graph is connected if you can trace a path from any
vertex to any other vertex just by following edges.

Theorem 1 (Euler’s Formula). If X is a finite set, then |X| is the size or cardinality of |X|.
Let G be a connected planar graph with vertex set V and edge set E. Then any planar drawing

of G has f faces, where |V | − |E|+ f = 2.

Problem 1. Prove Euler’s formula by induction on the number of faces.
Hint: The connected graphs that can be drawn with f = 1 are the trees, that is, the connected

graphs without cycles. Prove Euler’s formula for trees by induction on the number of edges.

In the following, let G be a graph with vertex set V and edge set E.

Problem 2. Show that if G is planar, then |E| ≤ 3|V |.

Let the crossing number cr(G) of a graph G be the minimum number of pairs of edges that need
to cross in order to draw G in the plane.

Problem 3.

1. Show that cr(G) = 0 if and only if G is planar.

2. Show that cr(K5) = cr(K3,3) = 1.

Problem 4. Show that cr(Kn) ≥ 1
5

(
n
4

)
. It is actually known that cr(Kn) ≤ 3

8

(
n
4

)
, so your lower

bound is correct within a factor of 2. (Hint: Look at the contribution from each K5-shaped sub-
graph.)

Problem 5. Show that cr(G) ≥ |E| − 3|V |.

Now we prove the Crossing Lemma:
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Lemma 2 (Crossing Lemma). If |E| > 4|V |, then cr(G) ≥ |E|3
64|V |2 .

Problem 6. LetG be a graph where |E| > 4|V |. We will use probability to show that cr(G) ≥ |E|3
64|V |2 .

Say you have a loaded coin, which comes up heads with probability p. (We will choose p later,
but assume that 0 ≤ p ≤ 1.) Now for each vertex v ∈ V , flip the coin, and put v in the set VH if the
coin comes up heads. Now let H be the graph with vertex set VH , where v, w ∈ VH are connected
with an edge if and only if they are in G.

1. What is the probability that a given edge e of G is in H?

2. Assume G is drawn in the plane with exactly cr(G) crossings, and H is drawn the same way,
except with some vertices and edges missing. If e1, e2 are edges of G that cross, what is the
probability that both are in H?

3. Recall that if X is a random variable, E[X] denotes the expectation of X, or the average value
it takes. Find the expectation of these three variables:

• |VH |, the number of vertices of H

• |EH |, the number of edges of H

• cH , The number of crossings in the drawing of H

4. Explain why E[cH ] ≥ E[|EH |]− 3E[|VH |].

5. Set p = 4|V |
|E| . Convince yourself that this is a valid probability. Then combine the last two

parts of this problem and prove the inequality

cr(G) ≥ |E|3

64|V |2
.

Problem 7. Let G be a graph with n vertices each of degree at least 9. Show that the crossing
number of G is at least 4n

3 .

2 Asymptotic (Big O) Notation

Before we move on to the “Incidences” in the title of this class, we need to develop some notation.
Let’s say we have a function, f : N → R≥0, and we’d like to know roughly how fast it grows. (In
this class, our function f will almost always be a function f : N → N that counts something.) Our
function might be hard to calculate and understand exactly, and might jump around erratically, but
we can get the big-picture idea by comparing it to better-behaved functions with Big O notation.

Definition 1. Let f : N → R≥0 and g : N → R≥0 be functions. We say that f(n) = O(g(n))
(pronounced “f is big O of g”) when there exists a positive constant C > 0 and a constant N ∈ N
such that for all n ≥ N , f(n) ≤ C · g(n).

Big O notation allows us to provide a loose upper bound for f(n), with f(n) = O(g(n)) saying
that for some choice of C, the function C ·g(n) is an upper bound for f(n) eventually. This notation
can save us a lot of work in calculating the exact constants C and N . It’s basically a generalization
of f(n) ≤ g(n), so the use of an = sign in the notation is a bit strange, but it’s standard, so here we
are.

Problem 8 (Big-O arithmetic, borrowed from Viv). Let f1, f2, g1, and g2 be functions from N →
R≥0.
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1. Assume that f1(n) = O(g1(n)) and f2(n) = O(g2(n)). Show that f1 · f2(n) = O(g1 · g2(n)),
where f1 · f2(n) = f1(n) · f2(n). In particular, show that f1 · f2(n) = O(f1 · g2(n)).

2. Show that (f1 + f2)(n) = O(max{f1, f2}(n)) and that max{f1, f2}(n) = O((f1 + f2)(n)).

3. Assume that f1(n) = O(g1(n)) and f2(n) = O(g2(n)). Show that (f1+f2)(n) = O(max{g1, g2}(n)).

4. Assume that f1(n) = O(g1(n)) and C ∈ R is any constant. Show that C ∗ f1(n) = O(g1(n)).

5. Assume that limn→∞ f1(n) =∞. Show that f1(n) + 1 = O(f1(n)).

Problem 9. Let r ∈ R. Show that for all ε > 0, nr log n = O(nr+ε).

Definition 2. Let f : N→ R≥0 and g : N→ R≥0 be functions. We say that f(n) = Ω(g(n)) when
there exists a positive constant C > 0 and a constant N ∈ N such that for all n ≥ N , f(n) ≥ C ·g(n).

Problem 10. Show that f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

Definition 3. Let f : N→ R≥0 and g : N→ R≥0 be functions. We say that f(n) = Ω(g(n)) when
there exists a positive constant C > 0 and a constant N ∈ N such that for all n ≥ N , f(n) ≥ C ·g(n).

The idea here is f(n) = Ω(g(n)) when g is an approximate lower bound for f .

Problem 11. Show that f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

Definition 4. Let f : N→ R≥0 and g : N→ R≥0 be functions. We say that f(n) = Θ(g(n)) when
both f(n) = O(g(n)) and f(n) = Ω(g(n)).

Problem 12. Show that for all k,
(
n
k

)
= Θ(nk). (Here, we’re thinking of

(
n
k

)
as a function f(n) for

a fixed k.)

Problem 13. Show that f(n) = Θ(g(n)) is an equivalence relation, that is, the following three
properties hold:

• Reflexivity: For all f : N→ R≥0, f(n) = Θ(f(n)).

• Symmetry: For all f, g : N→ R≥0, f(n) = Θ(g(n)) if and only if g(n) = Θ(g(n)).

• Transitivity: For all f, g, h : N → R≥0, f(n) = Θ(g(n)) and g(n) = Θ(h(n)) implies f(n) =
Θ(h(n)).

Definition 5. Let f, g : N×N→ R≥0 be functions on two variables. Then we can still define O,Ω,
and Θ pretty much as before:

• Let f(m,n) = O(g(m,n)) when there exist C > 0 and N ∈ N such that for all m,n ≥ N ,
f(m,n) ≤ C · g(m,n).

• Let f(m,n) = Ω(g(m,n)) when there exist C > 0 and N ∈ N such that for all m,n ≥ N ,
f(m,n) ≥ C · g(m,n).

• Let f(m,n) = Θ(g(m,n)) when f(m,n) = O(g(m,n)) and f(m,n) = Ω(g(m,n)).

Problem 14. Pick your two favorite parts of Problem 8 and check that they still work when
f1, f2, g1, g2 are functions on two variables.
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3 Review

It will be useful to remember this lemma, and this definition, from yesterday:

Lemma 3 (Crossing Lemma). If |E| > 4|V |, then cr(G) ≥ |E|3
64|V |2 .

Definition 6. Let f, g : N× N→ R≥0 be functions on two variables.

• Let f(m,n) = O(g(m,n)) when there exist C > 0 and N ∈ N such that for all m,n ≥ N ,
f(m,n) ≤ C · g(m,n).

• Let f(m,n) = Ω(g(m,n)) when there exist C > 0 and N ∈ N such that for all m,n ≥ N ,
f(m,n) ≥ C · g(m,n).

• Let f(m,n) = Θ(g(m,n)) when f(m,n) = O(g(m,n)) and f(m,n) = Ω(g(m,n)).

4 Counting Incidences with the Crossing Lemma

Let P be a set of n points in R2, and let L be a set of m lines. An incidence of P on L is defined to
be an ordered pair (p, `) where p ∈ P, ` ∈ L, and the point p lies on the line `. We will care about the
number of incidences of P on L, which we denote by I(P,L). The critical theorem that we will use,
our hammer that makes every problem in discrete geometry look like a nail, is the Szemerédi-Trotter
Theorem:

Theorem 4. If P is a set of n points and L a set of m lines in R2, then I(P,L) = O
(
m2/3n2/3 +m+ n

)
.

We will prove this in Problem 16, but first let’s find some examples to explain the terms in this
bound.

Problem 15. This problem will justify the m and n terms in O
(
m2/3n2/3 +m+ n

)
:

• For every m,n > 0, find a set L of m lines and a set P of n points in R2 such that I(P,L) ≥ m.

• Similarly, for every m,n > 0, find a set L of m lines and a set P of n points in R2 such that
I(P,L) ≥ n.

We now prove Theorem 4:

Problem 16. Let P be a finite set of points and L a finite set of lines in the plane.

• Assume for the moment that there are at least 2 points from P on every line in L. Now use
P and L to construct a graph G. Find upper and lower bounds for the crossing number of G,
and use this to show that I(P,L) = O(|P |2/3|L|2/3 + |P |). (Hint: The |E| < 4|V | assumption
of the crossing lemma will require you to do a bit of casework.)

• Prove that I(P,L) = O(|P |2/3|L|2/3 + |P |+ |L|).

Problem 17. This problem will justify the m2/3n2/3 term in Theorem 4:
Let h,w ∈ N, and let P be the h × w-grid {1, 2, . . . , w} × {1, 2, . . . , h}, consisting of h rows of

w points in the plane. Let L be the set of all lines of negative slope that pass through exactly one
point of each row, as depicted in the following figure.
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Figure 1: Picture by Adam Sheffer

• Show that there are approximately w
h slopes of lines in L.

• Given a slope s, (approximately) how many lines of slope s are there in L?

• Show that when h,w are both large, |L| = Θ(h2

w ).

• Show that I(P,L) = Θ(|P |2/3|L|2/3)

Hint: This problem, if done precisely, has several off-by-one issues, that is, lots of terms that look
like h−1 or w−1, where you’d really rather it was just h or w. As we’re only going for approximate
and asymptotic answers here, that difference won’t really matter, as we care about the case when h
and w are really large, and the −1 is tiny in comparison. Thus I’d just ignore those −1s at first, and
then afterwards, if you have time, go back and see how to rigorously take care of them by changing
the constants of your Θs.

Problem 18. If P is a finite set of points in the plane, let T (P ) be the number of right triangles
whose vertices are all in P , and let U(P ) be the number of triangles whose vertices are all in P that
have area 1 (the U stands for unit area). Use Theorem 4 to prove that U(P ) = O(|P |7/3).

4.1 Rich Lines

Let P be a set of n points in the plane, and for r ≥ 2, let mr be the number of lines through at least
r points in P . These are called the r-rich lines.

Problem 19. Prove that there is a positive constant C such that for all r ≥ 2, mr ≤ C
(

n2

r3 + n
r

)
.

Note: This is a bit stronger than saying that mr = O
(

n2

r3 + n
r

)
, but if you can prove the Big-O

version, you’re well on your way.

Problem 20. Show that if A ⊂ R has |A| = n, then there are O(n4 log(n)) collinear triples in
A×A.

4.2 Higher-Degree Curves

Problem 21. Let P be a set of n points in the plane, and Γ a set of n hyperbolas, each defined by
an equation of the form (x− a)2 − (y − b)2 = 1. Show that I(P,Γ) = O(n4/3).

Problem 22. Construct a set P of m points and a set Γ of n parabolas, each defined by an equation
of the form y = ax2 + bx+ c, such that I(P,Γ) = Ω(m1/2n5/6). This shows that Szemerédi-Trotter
doesn’t apply to all conic sections.
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5 Distinct and Unit Distances Problems

In this section, we will investigate two questions posed by Erdős in 1946. They have stumped
mathematicians for decades, but we can make some progress today!

Let P be a finite set of points in the plane.

5.1 Unit Distances

We define the unit distance pairs in P to be pairs {p, q} ⊆ P such that |pq| = 1. We define U(P ) to
be the number of unit pairs in P , and for a natural number n, define U(n) to be the largest value
of U(P ) for some set P with |P | = n. In the same 1946 paper, Erdős asked for upper and lower
bounds on U(n). Erdős’s original upper bound has only been improved once, in 1984, and we will
prove that best-known result today!

Problem 23. Find a sequence of sets Pm ⊂ R2 for all natural numbers m such that |Pn| = 2m, and
the number of unit distances in Pm is m2m. Conclude that U(n) = Ω(n log n). (This is close to the
best-known lower bound.)

Problem 24. Let C be a finite set of unit-radius circles. Let I(P,C) be the number of incidences
of points in P on circles in C. Taking inspiration from our proof of Szemerédi-Trotter, construct a
graph with vertex set P , and use it to prove that I(P,C) = O

(
|P |2/3|C|2/3 + |P |+ |C|

)
.

Problem 25. Construct a set C of unit-radius circles such that I(P,C)/2 is the number of unit
distance pairs in P , and use it to put an upper bound on the number of unit distance pairs.

Problem 26. The Unit Distances Problem can be posed in more dimensions also. For any k ∈ N
and any finite set P in Rk, we can define Uk(P ) to be the number of unit pairs in P , and define
Uk(n) to be the largest value of U(P ) over all sets P ⊆ Rk with |P | = n, so that U2(n) = U(n).
The 3-dimensional version is also wide open, but we can actually solve it for k ≥ 4 (up to a constant
factor, as usual). Prove that for k ≥ 4, Uk(n) = Θ(n2).

5.2 Distinct Distances

We define the number of distinct distances in P to be the number of real numbers r such that there
are points p, q ∈ P such that |pq| = r. Erdős’s Distinct Distances Problem asks to find upper and
lower bounds on the function d : N→ N, where d(n) is defined to be the minimum number of distinct
distances in a set P with |P | = n. This problem was a famous open problem for decades, and was
not fully solved until 2015 (well, actually, it’s only been aaaaalmost solved, but people are pretty
happy with the 2015 paper).

Problem 27. For each point p ∈ P , let Cp be the set of circles centered at P that pass through
other points in P . Let p, q ∈ P be distinct points. Show that 2|Cp||Cq| ≥ |P | − 2. Conclude that
d(n) = Ω(n1/2).

Problem 28. The Distinct Distances Problem has been posed in more dimensions also. If k is a
positive integer, let dk(n) be the minimum number of distinct distances in a set of n points in Rk.
Show that for each k, dk(n) = Ω(n1/k) and dk(n) = O(n2/k).

Hint: To show that dk(n) = O(n2/k), you want to actually provide concrete examples.

Problem 29. We now have an upper bound on the number of distinct distances, but we can improve
that upper bound in the two-dimensional case. Use the following Theorem to improve your upper
bound, by measuring the number of distinct distances in an n× n grid of points in the plane.

Theorem 5 (Landau-Ramanujan). The number of integers in [1,m] that are the sum of two perfect
squares is θ(m/

√
logm).
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We can also use incidences to improve our lower bound:

Problem 30. Using our version of Szemerédi-Trotter for unit circles, show that d(n) = Ω(n2/3).

5.3 Alternate Metrics

Both of these problems revolve around a notion of “distance” of points in the plane. What happens
if we change that too?

One alternate notion of distance is called the L1 or Manhattan metric. In this context, we
redefine the distance between two points of the plane, (x1, y1) and (x2, y2), to be |x1−y1|+ |x2−y2|.
To get an intuition for this, imagine you’re in a city with a perfectly North-South/East-West grid
(more or less like Manhattan). If you want to get from one point to another, the fastest way to get
there is by walking due North/South until you’re on the same street as your destination, and then
walking East/West until you get there. This means that the total distance you cover is the sum of
the horizontal distance between the two locations and the vertical distance - |x1 − y1|+ |x2 − y2|.

Problem 31. Draw the set of all points in the plane that have L1-distance 1 from the origin. This
is the L1 version of the unit circle.

Problem 32. Given a finite set P ⊂ R2, define UL1
(P ) to be the number of unit-distance pairs of

points in P , where by “unit-distance”, I now mean that the L1-distance between the two points is
1. For n ∈ N, define UL1

(n) as before to be the maximum of UL1
(P ) over all P with |P | = n. Up

to a constant factor, solve for UL1
(n).

Problem 33. Given a finite set P ⊂ R2, define dL1(P ) to be the number of distinct L1-distances
between pairs of points in P . For n ∈ N, define dL1

(n) as before to be the minimum of dL1
(P ) over

all P with |P | = n. Up to a constant factor, solve for dL1
(n).

6 Alternate Metrics

Both of these problems revolve around a notion of “distance” of points in the plane. What happens
if we change that too?

One alternate notion of distance is called the L1 or Manhattan metric. In this context, we
redefine the distance between two points of the plane, (x1, y1) and (x2, y2), to be |x1−y1|+ |x2−y2|.
To get an intuition for this, imagine you’re in a city with a perfectly North-South/East-West grid
(more or less like Manhattan). If you want to get from one point to another, the fastest way to get
there is by walking due North/South until you’re on the same street as your destination, and then
walking East/West until you get there. This means that the total distance you cover is the sum of
the horizontal distance between the two locations and the vertical distance - |x1 − y1|+ |x2 − y2|.

Problem 34. Draw the set of all points in the plane that have L1-distance 1 from the origin. This
is the L1 version of the unit circle.

Problem 35. Given a finite set P ⊂ R2, define UL1
(P ) to be the number of unit-distance pairs of

points in P , where by “unit-distance”, I now mean that the L1-distance between the two points is
1. For n ∈ N, define UL1

(n) as before to be the maximum of UL1
(P ) over all P with |P | = n. Up

to a constant factor, solve for UL1(n).

Problem 36. Given a finite set P ⊂ R2, define dL1(P ) to be the number of distinct L1-distances
between pairs of points in P . For n ∈ N, define dL1

(n) as before to be the minimum of dL1
(P ) over

all P with |P | = n. Up to a constant factor, solve for dL1
(n).
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7 Additive Combinatorics

Let A,B ⊂ R be finite sets. Then we define A+B to be {a+ b : a ∈ A, b ∈ B} and AB = {ab : a ∈
A, b ∈ B}.

Problem 37. If A ⊂ R has size n, what are the minimum and maximum possible values of |A+A|
and |AA|? Given some n, can you find a set A of size n where |A+A| and |AA| are both maximized?

Problem 38. If A ⊂ R is finite, show that max(|A+A|, |AA|) = Ω(|A|5/4).

Problem 39. Prove that |A+AA| = Ω(|A|3/2).

Problem 40. Prove that |A+A+A||AAA| = Ω(|A|3/2|A+A|1/2|AA|1/2).

8 Cuttings

To move further in incidence combinatorics, we need to develop new tools. Probably the most
successful technique in the area is partitioning. If you want to understand the incidences of a set of
points on a set of curves, it is often helpful to carve up the plane (or a higher-dimensional space) into
carefully-chosen pieces, bound the number of incidences in each piece separately, and then add it all
back up. In particular, one of the key ideas behind the proof of Distinct Distances is a partitioning
theorem, that leads to a whole “Polynomial Method”. As for this class, we’re going to look at how
to prove Szemerédi-Trotter using this partitioning philosophy.

First we’ll look at general graph theory result which gives us some quick incidence bounds. For
the statement of this theorem, we’ll need a bit of nomenclature about bipartite graphs. A bipartite
graph is a graph whose vertex set can be split into two disjoint subsets V1 and V2 such that each
edge connects a vertex in V1 to a vertex in V2. For s, t ∈ N, we define the complete bipartite graph
Ks,t to be a bipartite graph where |V1| = s and |V2| = t, where every vertex in V1 is connected to
every vertex in V2.

Problem 41. How many edges does Ks,t have?

If G is a bipartite graph with its vertex set partitioned into V1 and V2, then a copy of Ks,t

consists of a set V ′1 ⊆ V1 of s vertices in V1 and a set V ′2 ⊆ V2 of t vertices in V2, such that every
vertex of V ′1 is connected to every vertex of V ′2 .

Theorem 8.1 (Kövári-Sós-Turán). Let G be a bipartite graph with vertex set partitions V1 and V2,
with |V1| = m and |V2| = n, and edge set E. Assume G contains no copy of Ks,t with the s vertices
in V1 and the t vertices in V2. Then |E| = O(mn1−1/s + n).

Problem 42. Let P be a finite set of points in the plane, and L a finite set of lines. Using Theorem
8.1, show that I(P,L) = O(|P ||L|1/2 + |L|) and I(P,L) = O(|L||P |1/2 + |P |).

Problem 43. Let P be a finite set of points in the plane, and C a finite set of not-necessarily-unit
circles. What bounds can you find on I(P,C)? What if C is instead a finite set of curves, each of
which is the graph of a polynomial f of degree at most k?

Now let’s introduce a partitioning tool that will let us divide up the plane and then conquer with
Theorem 8.1. Later on, we will prove a slightly weaker version of it.

Theorem 8.2 (Cutting Lemma for Lines). Let L be a set of n lines in the plane, and let r be a
parameter, 1 < r < n. Then the plane can be subdivided into t generalized triangles (this means
intersections of three half-planes) ∆1,∆2, . . . ,∆t in such a way that the interior of each ∆i is
intersected by at most n/r lines of L, and we have t = O(r2).
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This is a cutting lemma designed specifically for a set of n lines in the plane, so we will use it
for another proof of Szemerédi-Trotter.

Problem 44. Let P be a set of n points and L a set of n lines in the plane. Let’s prove that
I(P,L) = O(n2/3) using Theorem 8.2 and Kövári-Sós-Turán.

Specifically, for some yet-to-be-determined value of r, apply Theorem 8.2 to L, and use Kövári-
Sós-Turán to bound the incidences in each triangle ∆i separately (you’ll also want to consider
the vertices of these triangles separately, because such a vertex could belong to arbitrarily many
triangles). Now add up what you get, and find a value of r that will give you the desired bound.

(If you want to get the same I(P,L) = O(m2/3n2/3 + m + n), then you will have to vary r
depending on the exact ratio of m to n, but I think you get the idea.)

There’s also a cutting lemma for circles:

Theorem 8.3 (Cutting Lemma for Circles). Let C be a set of n circles in the plane, and let r be
a parameter, 1 < r < n. Then the plane can be subdivided into t sets ∆1,∆2, . . . ,∆t in such a way
that the interior of each ∆i is intersected by at most n/r circles of C, and we have t = O(r2 log2(n)).
Each ∆i can be selected to be a “circular trapezoid” - that is, its boundary consists of at most two
vertical line segments and at most two circular arcs - and the interiors of the ∆is are disjoint.

You can get rid of the pesky log2(n) factor, but it makes this easier to prove, and then it is no
longer guaranteed that the ∆is are nonoverlapping. It’s not actually horrible if they’re overlapping,
but it makes the problem that follows a little too hard for this class.

Problem 45. Using the cutting lemma for circles together with your previous incidence bounds
to show that if P is a set of n points in the plane and C is a set of n circles, then I(P,C) =
O(n1.4 logc(n)) for some constant c.

Actually, more is true. We showed that if P is a set of points and C a set of circles with
|P | = |C| = n, we have I(P,C) = O(n1.4 logc(n)). If we had more time, we’d be able to show that
in general, even if |P | and |C| have different sizes, I(P,C) = O(|P |3/5|C|4/5 + |P | + |C|). When
|P | = |C| = n, this reduces to the bound we proved, just without that pesky log factor.

Problem 46. Improve the lower bound on distinct distances: d(n) = Ω(n3/4).

Problem 47. Now let’s try to prove a slightly weaker version of Theorem 8.2. The only difference
is the very last line, where we have t = O(r2 log2(n)) instead of t = O(r2).

Let L be a set of n lines in the plane, and let r be a parameter, 1 < r < n. Then we will
show that the plane can be subdivided into t generalized triangles (this means intersections of three
half-planes) ∆1,∆2, . . . ,∆t in such a way that the interior of each ∆i is intersected by at most n/r
lines of L, and we have t = O(r2 log2(n)).

To show this, we carefully choose a number s, and then randomly select (with replacement) s
lines from L, which we collect in a set S ⊆ L. Then we use the at most s lines in S, and use
them to cut the plane up into polygonal cells. If any of these cells has too many sides, we cut it
along diagonals until we are left with only triangles. Now find a value of s such that the number
of triangles in this decomposition is is O(r2 log2(n)) while the probability that the interior of each
triangle is intersected by at most n/r lines of L is positive.

Problem 48. Now let’s prove Theorem 8.1. To do this, I’d recommend bounding above and below
the number of copies of Ks,1 in the graph G. Then you’ll also want to know Jensen’s Inequality,
which says that if f : R→ R is a convex function, then for any x1, . . . , xk, the average value of f at

those points is at least the value of f at the average, that is: 1
k

∑k
i=1 f(xi) ≥ f

(
1
k

∑k
i=1 xi

)
.
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Problem 49. Prove the cutting lemma for circles.
Hint: As with the cutting lemma for lines, choose S ⊆ C with s independent random draws.

Then partition the plane with these circles, and from every intersection point, and from the leftmost
and rightmost points on each circle, draw a vertical line segment up to the next circle (or all the
way to infinity) and down to the next circle (or infinity).

Show that for the correct choice of s, these circles and line segments partition the plane into the
∆1, . . . ,∆t that we want with positive probability.

9 References

Most of this material comes from either Adam Sheffer’s website or the notes I took in his classes.
Check out https://adamsheffer.wordpress.com/pdf-files/ if you want to learn more about
this area!

The material in the last section, however, draws mostly from Andrew Suk’s notes at www.math.
ucsd.edu/~asuk/Lecture4.pdf
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