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1 Geometric Series

Throughout this handout, we will make use of what’s called a geometric series: the infinite sum∑∞
i=0 x

i for some real x. You may already know a formula for this series: 1
1−x . When does this

formula work, and why?

Problem 1

(a) Let’s start with a finite version of the geometric series:
∑n−1

i=0 xi. Prove that this is 1−xn

1−x
whenever that number is defined. When is that number not defined?

(b) Now back to the infinite case. Using just algebra, and not worrying about whether sums
converge, calculate (1 − x)

∑∞
i=0 x

i by subtracting
(∑∞

i=0 x
i
)
− x

(∑∞
i=0 x

i
)

like you would with a
polynomial, by grouping like terms. From this calculation, convince yourself that if the number∑∞

i=0 x
i is defined, it should be 1

1−x .

(c) Now we show that this formula works exactly when |x| < 1. If you are familiar with limits,
try to use them in your justifications, but otherwise, it’s ok to be vague. When |x| < 1, convince
yourself that xn shrinks towards 0 as n gets large enough, and thus for large n, 1−xn

1−x should be close

to 1
1−x .

(d) Now if x ≤ −1 or x ≥ 1, convince yourself that xn gets further and further away from 0
when n gets very large, so the finite sums

∑∞
i=0 x

i are actually very different from 1
1−x , so this is

not the infinite sum after all.

2 Constructing the Cantor Set

In this section, we will construct a subset C∞ ⊂ [0, 1], known as the Cantor set, which has many
interesting and surprising properties. It pops up as a counterexample repeatedly in the mathematical
fields of analysis and topology, defying the intuition that we develop from studying more “normal”
sets such as intervals.

2.1 Removing Intervals

To define C∞, we first define Cn ⊂ [0, 1] for each natural number n = 0, 1, 2, 3, . . . . We start with
C0 = [0, 1], and iteratively remove pieces. To form C1, we remove the middle third of the interval
[0, 1], but not its endpoints: that is, we remove the set ( 1

3 ,
2
3 ) of points x such that 1

3 < x < 2
3 .

∗Parts by Aaron Anderson, parts by Dimitri Shlyakhtenko
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Problem 2 We can visualize C0 as a filled-in piece of the number line, with square brackets to
denote that the endpoints of the interval are included:

0

[——————————————————
1

]

Using square brackets to denote included endpoints or parentheses to denote excluded endpoints,
draw the set C1 here:

0

[
1

]

Problem 3 Now to define C2, we take each of the intervals remaining in C1 ([0, 1
3 ] and [23 , 1]) and

remove the middle third of each of these. Draw the set C2:

0

[
1

]

For each subsequent step, if we’ve defined Cn, it’ll be a union of several closed intervals all of
the same length, separated from each other. Then to define Cn+1, we remove the middle third of
each of those intervals. Draw a few more iterations, such as C3, C4, C5, . . . , as many as you feel you
need to get the picture:

0

[
1

]

0

[
1

]

0

[
1

]

How long are the intervals in Cn, and how many are there?

Problem 4 Now we have an infinite sequence of sets, which we can use to define C∞. Let
C∞ =

⋂∞
n=1 Cn, that is, C∞ is the set of points which are in Cn for every number n.

Given your pictures from earlier, draw (an approximate version of) C∞, the Cantor set:

0

[
1

]

2.2 Ternary

Another definition of the Cantor set relies on the ternary notation for real numbers. Our standard
way of writing a real number in the interval [0, 1] is as a decimal sequence, which we might write
generally as 0.a1a2a3 . . . where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a valid digit less than 10. The actual
number that this represents is given by the infinite sum

∑∞
i=1 ai10−i.

We can of course generalize this notation to bases other than 10. You’ve likely worked with binary
numbers in some form, and we can also write any number in [0, 1] as 0.a1a2a3 . . . or

∑∞
i=1 ai2

−i

where each ai is in {0, 1}, which is a binary expansion for that number. In fact, we could use any
natural number b greater than 1 as our base, and let our valid set of digits be {0, 1, . . . , b− 1}, and
then evaluate 0.a1a2a3 . . . as

∑∞
i=1 aib

−i. Today, we’re interested in ternary numbers, base b = 3.
Notational aside: We call the numbers chosen from {0, 1, . . . , b − 1} digits regardless of which

base b we’re in, but there are cuter names for digits from specific bases. Thanks to their ubiquity in
computers, most people know that binary digits are called bits, but it’s also accepted to call ternary
digits trits, and sometimes it’s useful to call the usual decimal digits dits, although usually these are
just called digits.
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Problem 5 Note that we said this notation could be used to write the numbers in [0, 1], and not
[0, 1). What is a base b expansion 0.a1a2a3 . . . for 1? Why can’t we write any number greater than
1 this way?

We can use ternary notations to define the Cantor set a different way: as the set of numbers that
can be written as a ternary sequence without using any 1s. In the next two problems, we prove that
this defines the same set C∞ that we defined earlier.

Problem 6 Every ternary sequence consisting only of 0s and 2s (avoiding 1s) is in the Cantor set
C∞ defined above.

Problem 7 Every point in the Cantor set can be written with a ternary sequence consisting of
only 0s and 2s. (Note: it may also be possible to write a point in the Cantor set as a ternary
sequence that contains a 1. Why isn’t this a problem?)

Problem 8 Show that the only time two strings of ternary digits 0.a1a2 . . . and 0.b1b2 . . . give
rise to the same number is when there is some n such that a1 = b1, a2 = b2, . . . , an−1 = bn−1, but
bn = an + 1, and for m > n, am = 2, while bm = 0. In other words, the only numbers that have
an ambiguous ternary representation are ones for which there is a ternary representation involving
only a finite number of non-zero digits. (Bonus: Generalize this for any base.)

3 Measure and Probability

3.1 Measure

As the Cantor set is defined by starting with the unit interval [0, 1] and removing parts, we may
wonder how much is left after this process? That is, we’re asking what the measure, or length, of
the Cantor Set is. The measure of an interval [a, b] or (a, b) is just its length, b− a, and the measure
of a finite union of intervals which don’t overlap is just the sum of the measures of the intervals.

Problem 9 What is the measure of C1? How about Cn in general (where n is finite)?

Problem 10 To calculate the measure of C∞, we need to observe one more property of measure.
As no interval has negative length, no set has negative measure. Also, if A ⊂ B, then the measure
of A is less than or equal to the measure of B. Given this property, what is the measure of C∞?

3.2 Fat Cantor Sets

At each step in our construction, we removed the middle third of each remaining interval. We can
generalize this, instead of removing the middle third, removing some other fraction of each remaining
interval at step n. Let us define D0 = [0, 1], and if Dn is a union of non-adjacent closed intervals,
like in the Cantor set construction, we take each interval [a, b], and delete an open interval from the
middle with length rn(b− a). If rn = 1

3 for each n, then this is the regular Cantor set construction.

Problem 11 For a general sequence r0, r1, r2, . . . with 0 < rn < 1 for each n, what is the measure
of the resulting set D∞ =

⋂∞
n=0 Dn? Can you come up with a sequence r0, r1, r2, . . . such that this

measure is 1
2? In this case, how different does D∞ look from C∞?
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3.3 Probability

Measure is closely related to probability. If we choose a point on the unit interval [0, 1] uniformly at
random, then there is a 50% chance that the point is on the left half of the interval, in the smaller
interval [0, 1

2 ], which has measure 1
2 = 50%. Similarly, if we have any other subset A ⊂ [0, 1], then

the probability that our randomly-selected point is in A is the measure of A. As we have calculated
the measure of the Cantor set, we now also know that this is the probability that a uniformly
randomly selected point in [0, 1] belongs to the Cantor set. This probability is 0, even though there
are infinitely many points in the Cantor set that we could in theory choose! If this seems strange,
perhaps it will make more sense when choosing points in the following way:

Problem 12 Let’s pick a point in [0, 1] randomly in a different way. To do this, we will pick
random numbers from the set {0, 1, 2}, each with probability 1

3 , and chain them together into an
infinite ternary sequence, which will then correspond to a point in [0, 1]. Beware that this may not
be the same thing as what we were doing before, as there may be more than one ternary sequence
resulting in the same point.

If we do this, what is the probability that none of the first n digits of our sequence is a 1? How
about the probability that none of the digits at all are 1s?

4 Cardinality

4.1 Intro/Review of Cardinality

Having quantified the size of the Cantor set with the related notions of measure and probability, we
can try to compute its size in another sense. The set-theoretic notion of size is cardinality, where
two sets have the same size if there is a bijection between them. That is, sets A and B have the
same cardinality if there is a function f : A → B (mapping elements of A to elements of B) with
the following two properties:

• Injective/One-to-one If x, y ∈ A with x 6= y, then f(x) 6= f(y), so every element of B has
at most one element of A mapping to it.

• Surjective/Onto If y ∈ B, then there is some x ∈ A such that f(x) = B, that is, every
element of B has at least one element of A mapping to it.

We will denote the cardinality of a set A as |A| . Then if f : A → B satisfies both of those
properties and is thus a bijection, |A| = |B| . If we only know that there is a one-to-one function,
an injection, from A to B, then we know that |A| ≤ |B| , and if we know there is a surjection from
A to B, then |A| ≥ |B| .

This definition works fine for finite sets, where any set with n elements has the same cardinality
as the set {1, 2, 3, . . . , n}, and is thus said to have cardinality n.

Determining the cardinality of an infinite set is in general much more complicated. But not all
infinite sets have the same cardinality - for instance, N, the set of natural numbers, is strictly smaller
than the set R of real numbers, or even [0, 1]. As a bijection f : N → A can be seen as counting
the set A, as then the elements of A can be listed as f(0), f(1), f(2), . . . , we call sets that are the
same cardinality as N countable, and all other infinite sets that are not countable uncountable. All
uncountable sets are bigger than all countable sets.

4.2 Endpoints

First, we concern ourself with a particular subset of the Cantor set. Each set Cn in our definition
was a union of separate intervals. Let En be the set of the endpoints of these intervals, that is,
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E0 = {0, 1}, E1 = {0, 1
3 ,

2
3 , 1}, and so on. Now let E∞ =

⋃∞
n=0 be the union of all of these sets, the

set of all endpoints of any En.

Problem 13 Prove that E∞ ⊂ C∞, or that every endpoint makes it into the final Cantor set C∞.

Problem 14 Given a finite number n, how big is En? Is E∞ countable or uncountable?

Problem 15 Let T be the set of infinite ternary sequences that only contain 0s and 2s. Show that
the function f that sends each sequence a1, a2, a3, . . . in T to the number 0.a1a2a3 . . . is a bijection
between T and C∞.

Is T countable or uncountable? How about C∞?

Problem 16 Show that there is a point in the Cantor Set that is not the endpoint of any interval
used in its construction (e.g. not the endpoint of one of the intervals of length 3−n in the set Cn).
Can you find any such points? Are any of them rational? If you’ve found a rational non-endpoint
point, how does it fit into your picture from the first section where we construct the Cantor set by
removing intervals?

5 Some notions of dimension.

The main question we aim to address in this section is:

How can we tell the dimension of a set? For example, certain objects are one-
dimensional (e.g. line segments in 3D space), or two dimensional (e.g. surfaces in 3D)
or three-dimensional. How can this be detected?

5.1 Minkowski content.

Let X be a subset of 2D space, and let’s assume that X is “bounded” (i.e., it fits inside a disk of a
sufficiently large radius).

We’ll denote by Nt(X) the t-neighborhood of X, i.e. Nt(X) is the set of all points which are
distance at most t from some point of X.

If X is a single point, Nt(X) is a disk of radius t centered at that point. If X consists of two
points, then Nt consists of the two disks each of radius t centered at those two points.

Problem 17 In each of the following cases: (a) X a single point; (b) X a line segment; (c) X a
disk, find a formula for the area of Nt(X).

The idea is to now look at the rate at which the area shrinks as t decreases to zero.

Problem 18 (a) Assume that f(t) = td. Find an expression for

log f(t)

log t
.

(b) Assume now that f(t) = Ctd for some fixed C. Show that for small t,

log f(t)

log t

is very close to d.
(c) Guess a formula for the dimension of X in terms of the areas of Nt(X).
This formula is called the Minkowski dimension of X.
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Problem 19 Redo everything in this section for a subset X ′ of 3D space. Explain why if X ′ is
contained in a plane, then its dimension (measured using areas in that plane) is the same as the one
measured using volumes in three dimensions. Now redo everything for a subset X ′′ of 1-dimensional
space.

5.2 Packing and covering dimensions.

Assume now that X is a subset of the line and that X is bounded. Denote by Kt(X) the smallest
number of intervals each of length t needed to cover X. Denote by Pt(X) the largest number of
intervals of length t so that the intersections of these intervals with X are disjoint and nonempty.

Problem 20 Let X be (a) a point; (b) a line segment. Find Kt(X).

Problem 21 Show the following:

tPt(X) ≤ Area of Nt(X) ≤ tKt(X).

Problem 22 Show that Pt(X) ≥ K2t(X). Hint. Assume that X is covered by p intervals of length
t, and the number p is minimal, i.e., p = Pt(X). Now replace each interval with another interval of
twice the length, but centered at the same point. Show that these intervals must cover X (if they
don’t, was p really minimal?)

Problem 23 We thus have (for t < 1, so that log t < 0):

log tPt(X)

| log t|
≤ log Area of Nt(X)

| log t|
≤ log tKt(X)

| log t|
≤

log tPt/2(X)

| log t|
.

Replace t by 2s in the last equation and notice that

log 2sPs(X)

| log 2s|
=

log sPs(X) + log 2

| log s + log 2|
≈ log sPs(X)

| log s|

for very small s. Conclude that for t extremely small, all of the numbers

log tPt(X)

| log t|
,

log tKt(X)

| log t|
,

log Area of Nt(X)

| log t|

are approximately the same. How does the last formula compare to the one you found in the previous
section?

Definition 1. If for very small t, the quantity log tKt(X)
| log t| becomes approximately equal to a number

d, we call d the covering (or packing) dimension of X.

6 The dimension of a Cantor set.

Problem 24 What is the covering dimension of the set C∞? Hint: estimate the covering and
packing numbers of C∞.

Now compute:
logKt

| log t|
This is the dimension of the Cantor set.
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