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Chapter 1

Introduction and Definable Sets

1.1 Introduction

In this class, we will explore techniques that let us apply logic, and model theory in particular, to
everyday mathematics. Let’s start in a context that should already be familiar, and will only become
moreso: structures in the language of ordered rings.

This is centainly an everyday mathematical context. Structures in the language {0, 1, +, x, <}
include N,Z, Q, R. But what can we actually say about these ordered rings (or in the case of N, a
semiring) just using first-order logic in this language?

At the most basic level, we can ask which sentences these different structures satisfy. It’s a pretty
straightforward exercise to determine that these structures differ already at that level.

Exercise 1.1.1. For each pair of structures in the list N, Z, Q, R, find a sentence that one
satisfies, while the other does not.

Meanwhile, if we change the language by dropping multiplication (or down to just <), we find
that in the languages of linear orders {<} and of ordered (semi)groups {0, +, <}, we can distinguish
N from Z from Q and R, but Q and R satisfy exactly the same sentences.

Definition 1.1.2. Given a language £ and an L-structure M, let Th(M) (the complete
theory of M) denote the set of all L-sentences ¢ such that M E ¢.

Given L-structures M and N, say that they are elementarily equivalent, denoted M = N,
when Th(M) = Th(N). That is, when for each sentence ¢, M F ¢ <= N E ¢.

To show that Q and R are elementarily equivalent in either of the above languages, we use the
same strategy: find an easily-axiomatized complete theory that they both model.

Lemma 1.1.3. If T is a complete theory, and M E T, then Th(M) is the set of all conse-
quences of T. Thus if M\N ET, M =N.

In the case of the language of linear orders, the theory they both model and its completeness
may be familiar from 5700:



Fact 1.1.4. There is a complete theory DLO (dense linear orders) in the language {<} of
linear orders whose models include Q and R.

In the language of ordered groups, things get a little trickier. We will prove the following in this
class.

Fact 1.1.5. There is a complete theory ODAG (ordered divisible abelian groups) in the lan-
guage {0, +, <} of ordered groups whose models include Q and R.

In the rest of this class, we will not care too much about specific structures - we will care more
about their complete theories. We will develop tools for proving completeness of such theories,
for classifying them based on complexity, and for evaluating formulas and sentences modulo these
theories.

We will find that some theories are inherently difficult to understand, because of Gédelian phe-
nomena you have seen in 5700, while others are actually very nice!

Incompleteness gives us some contrived examples of difficult-to-resolve sentences in the structure
(N;0,1, 4+, x, <). Historically, a huge fraction of mathematical effort has been spent trying to resolve
the truth of sentences in this structure. To state these, recall that there is a formula in this structure
that determines whether a number is prime:

Prime(z) :=1 <2z AVy,Vz,(yxz=2) = (y=1Vz=1).
Given this, we can state the following sentences:

The Twin Primes Conjecture: Vn,Ip,n < p A Prime(p) A Prime(p + 2)
The Goldbach Conjecture: ¥n,1 < n — Ip, g, Prime(p) A Prime(¢) Ap+q¢=n+n.

We can view this as a consequence of the definable set of primes being somewhat complicated,
and the extra quantifiers (V, 3) applied to make it into these sentences drives the complexity higher.
Meanwhile, in (R;0, 1, +, x, <), the story is very different. Consider the set in R?® defined by the
formula
é(a,b,c) <= Fzx,azx® +bx +c=0.

We find that ¢(a, b, ¢) is equivalent to
(a#0AD* —4ac>0)V(a=0A(b#0Vc=0)).

To evaluate this, we only need to perform a handful of algebraic operations, checks of equality, and
boolean operations.

We will find finitely-axiomatized and decidable complete theories, where all of the “paradoxes”
of incompleteness are irrelevant. In order to determine which sentences are true in a given theory,
we will want to find out how to evaluate all formulas, including those with free variables. The main
way we will do this is by eliminating quantifiers, allowing us to turn the complexity of first-order
logic into something tractable, and much closer to propositional logic.

Furthermore, these nice theories come in a variety of different flavors - it is easy to work with
vector spaces over a field, and it is easy to work with algebra over the real numbers, but for somewhat
different reasons. These subtleties will come out when we look at the combinatorics inherent in these
structures.

For all of these purposes, we need to understand formulas, not only syntactically, but semantically
in terms of the sets they define.



1.2 Definability

Definition 1.2.1. Let M be an L-structure, and let A C M. Then aset D C M™ is cailled A-
definable when there is a formula ¢(Z;9) = ¢(v1,...,%n, Y1, - -, Ym) and parameters b € A™
such that for alla € M", a € D < M E ¢(a;b).

For some basic examples, let’s look at the language {0, 1,4, x} of (semi)rings. We will see that
in each of the structures N, Z, Q, R, the set {(x,y) : ¢ < y} is definable.

This is easy for N: 3z, y =z + 2.

This is almost as easy for R: 3z,y = x + 22.

For Z and Q, we have to use Lagrange’s Four-Square Theorem: Every n € Z with n > 0 can be
written as the sum of four perfect squares. Thus for Z, we can use

2, .2, .2, .2
J21, 29,23, 24,y = T + 2] + 25 + 25 + 2]

This will actually also work in Q - exercise if you want!

This means that in each of these structures, everything definable in the language {0, 1, +, x, <}
is already definable without the symbol <. That’s because if there’s a formula ¢(z;y) in the ring
language equivalent to x < y, we can just replace every instance of t; < to with ¢(t1;t2).

This is an instance of an expansion by definitions, which is where we add a symbol whose
interpretation is already definable to the language. This does not change the definable sets.

Another example of expansion by definition is in arithmetic. In (N; 0,1, 4, x, <), the exponenti-
ation operation is definable, so we frequently add it to the language for convenience.

1.2.1 Undefinability

It can be harder to show that sets are not definable, but this is just as informative.
In the realm of arithmetic, we will be able to show undefinability by diagonalization:

Fact 1.2.2 (Tarski’s Undefinability of Truth (Simple Version)). The set
{r¢7: ¢ is a sentence such that (N;0,1,+, x,<) E ¢}

of natural numbers is not definable in (N;0,1,+, x, <).

Other structures that model theorists prefer tend to lack the expressive power to even do this
diagonalization proof. In these cases, we will be able to place limits on definability by proving
structural theorems about definable sets.

This starts by proving quantifier elimination in an appropriate language. That is, we will show
that, after possibly expanding by definitions a little bit, every formula is equivalent to one that can
be written without ¥V or 3. This is true, for instance, in the familiar structures

(@Q <)
(R, <)
(2,0,+,<)
(C,0,1,4, x)
(R,0,1,+, x, <),

as we will show.



Because formulas without quantifiers are much easier to study, quantifier elimination will allow
us to characterize definable sets quite easily. For instance, over the complex numbers (or any other
algebraically closed field):

Fact 1.2.3. The quantifier-free definable sets (with parameters) in (C;0,1,+, X) are exactly
the constructible sets - that is, boolean combinations of zerosets of polynomials with coeffi-
cients in C.

Once we characterize definable sets in this way, we can start proving more interesting properties
of definable sets, and easily show that other sets are not definable. Staying with the algebraically
closed field example:

Corollary 1.2.4. The structure (C;0,1,+, X) is strongly minimal: any definable subset of
C (in one dimension) is either finite or cofinite.

Proof. Zerosets of polynomials are either finite or cofinite, and any boolean combination of finite
and cofinite sets is also finite or cofinite. O

Corollary 1.2.5. There is no definable linear order on C. In fact, C is stable - there cannot
be an infinite linear order I, sequences (a;,b; : i € I) with a; € C™ b; € C™ and a formula
o(x,y), even with parameters, such that

i<j <= CF ¢(a,bj).

1.3 Overview

Our first objective in this course is to build up a library of easy-to-understand structures. We will
start with countable structures we can explicitly construct from finite structures: Fraissé limits.
These include structures such as (Q, <), the random graph, and the countable atomless Boolean
algebra. We will learn how to show completeness, Ng-categoricity, and then quantifier elimination,
for theories of Fraissé limits, building on the back-and-forth technique mentioned in 5700.

We will then develop a more comprehensive toolkit for showing quantifier elimination in more
complicated structures, such as algebraically closed and real closed fields, at which point we can
really begin applying model theory to these structures.

Once we have seen how simple definable sets can be, we will contrast with how complicated they
can be when we don’t have quantifier elimination, such as in arithmetic.

We will also review compactness somewhere around here, including a semantic proof featuring
the ultraproduct construction.

Then we will pick up the story of definable sets in specifically ordered structures such as
(R;0,1,4, x,<). We will see how o-minimality: the simplest case for one-dimensional definable
sets in an ordered structure, implies a powerful structural theorem (the cell decomposition theorem)
for definable sets in all dimensions, even without quantifier elimination. This will let us work with
structures such as Rap exp, which at the moment is the most fruitful context for applying model
theory to other branches of math.

We then have some choices for where to go next. Some of my ideas include the following;:

e Dimension theory, and in particular, pregeometries/matroids, in strongly minimal and o-
minimal structures



e Incidence combinatorics and distal cell decompositions (the combinatorics of definable sets
over (R;0,1,+, x, <))

e NIP, VC-dimension and connections with statistical learning theory.

Please let me know if you have preferences about what you’d like me to cover.

If T don’t get to cover what you want, I have good news: you can cover it yourself! For students
enrolled in graduate class course numbers (perhaps we will change the exact mechanism, but certainly
for graduate students who want to), there is a presentation option for grading in this class, requiring
one (or possibly two if time allows) 45-minute presentations. I have a list of suggested papers for
presenting on the course website, and will add to it over time.



Chapter 2
Fraissé Limits

2.1 Fraissé Classes

Before we get into the weeds of model theory, we should spend some time developing a library of
examples. These can include famous structures, like the algebraic ones we have seen so far, but
should also include complete theories.

We will start with a method for constructing particularly nice countable structures, called Fraissé
limits. These are constructed as limits of families of finite substructures. To ground this construction
in an example to start, recall dense linear orders from 5700:

Fact 2.1.1. Let L. = {<}.
The L. -theory of dense linear orders without endpoints, abbreviated DLO, is complete, -
categorical, and (Q, <) E DLO.

To generate a structure like (Q, <), we start by looking at its finite substructures.

Definition 2.1.2. If £ is a relational language (that is, has no function symbols), and M is
an L-structure, let Age(M) be the class of all L-structures isomorphic to a finite substructure

of M.

As described, the age is a proper class. If you don’t like this, you can use the set of isomorphism
types of finite substructures of M instead.

Example 2.1.3. Age(Q, <) consists of all finite linear orders.

Proof. Any finite linear order is isomorphic to any other finite linear order of the same cardinality,
and for every finite cardinality n, (Q, <) contains a finite subset, and thus a finite substructure
which is a linear order, of cardinality n. Also, any structure in Age(Q, <) must be isomorphic to
a finite substructure, and thus must be a finite linear order. O]

We can make a few observations about the class of all finite linear orders, which we will describe
as properties:



Example 2.1.4. Let K be the class of all finite linear orders.

e Essential Countability (EC): Up to isomorphism, there are only countably many
structures in IC.

e Hereditary Property (HP): If A € K, and B is a finite substructure of A, then
BeKk.

e Joint Embedding Property (JEP): If A/ B € K, then there is some C € K into
which both A and B embed.

e Amalgamation Property (AP): If A By, B> € K, and there are embeddings f; :
A — By, then there is C' € K with embeddings ¢; : B; — C such that g; o f1 = g2 o fo,
making the following diagram commute:

V

B

AN

In fact, the first three of these hold for the age of any countable structure.

N
By
2

C
A

Proof. We will prove the first three for Age(M) where M is an arbitrary countable structure.

e EC: A countable structure has only countably many finite subsets, and thus countably
many finite substructures.

e HP: Any finite substructure of a finite substructure of M is also a finite substructure of

M.

e JEP: If A B are finite substructures of M, then (in a relational language) AU B is also a
finite substructure, into which both embed.

e AP: This one we're only proving for £ = Age(Q, <). Enumerate A as a1 < ag < -+ < ay,.
Then to define C, we will place elements in the gaps between elements of A. To extend the
embedding f7, we need to make sure that there are at least as many elements of C' between
ai,a;+1, as there are in By between fi(a;) and f1(a;11), and similarly for fs.

O

Definition 2.1.5. When L is a finite relational language, we call any class IC of finite £-
structures a Fraissé class when it satisfies EC, HP, JEP, and AP.

We now turn to another familiar example of a Fraissé class of finite structures: all finite graphs.

Theorem 2.1.6. The class of all finite graphs is a Fraissé class.

Proof. e EC: For any n, there are finitely many graphs on n vertices up to isomorphism, so
there are countably many when we union over all n € N.



e HP: A substructure of a graph is a graph.

e JEP: We can just put the two graphs next to each other, and choose arbitrarily whether
to put edges between the two graphs.

e AP: If A embeds into By and Bs, then we can add both sets of vertices By \ A and By \ A
to A. We know which edges we need between elements of A and B;, and can choose what
edges to put between By and B, arbitrarily.

O
These are the two most canonical examples - there are others, but many of those require adding
function symbols into the language, which makes things a little more complicated. This complicates
the definitions slightly, but the idea of everything we do can be extended to that with a few more
assumptions.

Exercise 2.1.7. Show that the class of all finite triangle-free graphs is a Fraissé class.

2.2 Fraissé Limits

Now that we’ve noticed that (Q, <) is a countable structure whose age is a Fraissé class, I can explain
why this structure is special. After all, (N, <) and (Z, <) are also countable linear orders with the
same age, but their theories are not Ny-categorical.

The critical idea is homogeneity:

Definition 2.2.1. Call a structure M ultrahomogeneous when for any finite substructures
A, B of M and an isomorphism f : A — B, there is an isomorphism g : M — M that extends
f-

If £ is a relational language, K is a class of finite L-structures, and M is a countably infinite
ultrahomogeneous L-structure whose age is IC, we call M a Fraissé limit of K.

Example 2.2.2. Tt is not hard to check that (Q, <) is ultrahomogeneous, and thus a Fraissé
limit for the class of finite linear orders.

We can start to connect Fralssé limits to Fralssé classes:

Theorem 2.2.3. If IC is a class of finite structures in a relational language with a Fraissé
limit M, then K is a Fraissé class.

Proof. Because K = Age(M), it must satisfy EC, HP, and JEP, so we just need to check AP.
Suppose A, By, By are isomorphic to finite substructures of M, and f; : A — B; are embed-
dings. We can assume (up to an isomorphism of everything involved) that A, By, By are actual
substructures of M, and that f; is the inclusion map of A into Bj, but we can’t simultaneously
assume that A is a substructure of By, or that f5 is an inclusion.

We can view f5 as an isomorphism from A to its image, a substructure of By, and by ultra-
homogeneity, we can let h : M — M be an automorphism extending fo. Then h~'o f5 is the
inclusion map of A into M, and its image is contained in h=1(By). We now let C be a finite
substructure containing both By and h_l(Bg). We then let g1 : By — C be the inclusion map,
and let g : By < C be the inclusion map ¢ composed with the restriction of A~! to By. Then
g1 0 f1 is the inclusion map of A into C, while in g, o fo, the restriction of h~! to By cancels with




I f2 to form another inclusion map, giving us the same map in the end. O

Meanwhile, to check that something is a Fraissé limit, we can check homogeneity step-by-step,
in a back-and-forth procedure that may look familiar:

Lemma 2.2.4. A countable structure M is ultrahomogeneous if and only if the following
holds: For any isomorphism f : A — B of finite substructures of M, and any finite substruc-
ture A C C, the isomorphism f extends to an isomorphism g : C' — D of finite substructures.

Proof. If M is ultrahomogeneous, then given f : A — B and C, we simply let h : M — M
extend f, and then restrict h to C.
For the main direction, we’re actually going to prove something a smidgen more general:

Lemma 2.2.5. Suppose M, N are countable structures such that for every isomorphism
f A — B of finite substructures A C M, B C N, and any finite substructure A C C C M,
the isomorphism f extends to an isomorphism g : C — D < N of finite substructures,
and the same holds with M, N switched.

Then f extends to an isomorphism h: M — N.

All we need for ultrahomogeneity is to apply this to N = M.

Now assume M, N has this property, and let f : A — B be an isomorphism of finite substruc-
tures. We can construct an isomorphism h : M — N extending f recursively, as the union of
isomorphisms f5 : Ap — By, each of which extends the last, where Uk A = M and Uk Bp = N.
Enumerate M = {mg,my,...},N = {ng,n1,...}. We start with fo = f. Then we recurse a
bit differently in even and odd steps. Assuming we have defined for : Aop — Bog, we want
to make sure that Asy4q contains my, which in the long run, will ensure that (J, Ay = M. If
my € Agg, we don’t need to do anything. If not, then let Aspy; be a finite substructure with
AgpU{my} C A’. By our assumption, we can then extend to an isomorphism f : Aggi1 — Bogi1.
Now assuming we have fory1 : Aogr1 — Bopy1 defined, let’s make sure that Bogyo contains ny,
ensuring that | J, By = N. We pick B2 containing Bajy1 U {n;}, then we extend f27k1+1 to an
isomorphism Bajt2 — Ask42, whose inverse extends fory1-

2.3 Random Graphs

Let’s advance our other example. We had another Fraissé class, the class of finite graphs. Does this
have a Fraissé limit? If we have no idea how to build one, we may as well try to build it at random.
Let’s just take a countably infinite set of vertices, and for each pair of vertices, we’ll flip a coin to
determine whether there should be an edge.

This generates a random countably infinite graph - what’s its age? For any finite graph A with
n vertices, the probability of a given n vertices forming an isomorphic graph is going to be positive.

n

In fact, it’s at least 9-(%) , because that’s the probability of each precise configuration of edges and
non-edges. Just call it p > 0.

Then we can bound the probability that no set of n vertices in the infinite random graph is
isomorphic to A. To simplify things, let’s split the vertices into an infinite sequence of disjoint sets
of n vertices. Then let F; be the event that the kth set is isomorphic to A - this is p. Then the
probability that none of these events happen is limy_, (1 — p)* = 0, so with probability 1, at least
one of these events happens, so A is in the age.

Taking the intersection over countably many graphs, we see that the probability of every finite
graph being in the age is also 1.

But what’s the probability of ultrahomogeneity? By (Lemma 2.2.4), to have homogeneity, we
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just need to check that for every isomorphism between finite subgraphs, and every extension of one to
a larger finite subgraph, the isomorphism extends. There are countably many choices of f: A — B
and C > A, so let’s find the probability of each one extending. We just need to find |C'\ A| vertices
that have the same relationship to the vertices of B, and to each other, as the vertices of C'\ A have
to A. The probability of this happening, for any ordered list of |C'\ A| vertices, is positive, as it is
27" where n is the number of edges we need. As before, the probability of this positive probability
failing for each of an infinite sequence of independent ordered lists is 0, so with probability 1, we
can extend this map. The probability that each of these countably many probability-1 properties
holds is 1, so with probabilistic certainty, we have generated a Fraissé limit, completely at random.

2.4 Uniqueness

We know that (Q, <) is a Fraissé limit of the class of finite linear orders, but what about other
countable structures with that age?

We can rule out (N, <), as any automorphism will leave 0 as the left endpoint This means that
the substructure {0} can’t be mapped by an automorphism to any of the isomorphic substructures
{n}. In general, any Fraissé limit of this class must not have a left endpoint, or for that matter, a
right endpoint.

We can also rule out (Z, <), as any automorphism will leave consecutive elements consecutive.
This means that the substructure {0,1} can’t be mapped by an automorphism to the isomorphic
substructure {0, 2}.

We can extend that argument. Let M is a Fraissé limit of this class with elements a < b. As
there is no right endpoint, let ¢ < b < ¢. As {a,b} and {a,c} are isomorphic, there must be an
automorphism h : M — M with h(a) = a and h(c) = b. It must thus send b to some h(b) with
a = h(a) < h(b) < h(c) = b, showing that M is dense.

We have thus shown that any Fraissé limit of this class is a countable model of DLO - we know
there’s only one of these up to isomorphism. We will now provide another proof of this which works
much more generally.

Theorem 2.4.1 (Uniqueness of Fraissé limits). If M, N are both Fraissé limits of a class
KC, then they are isomorphic.

In fact, if f : A — B is an isomorphism between a finite substructure of M and a finite
substructure of N, then there is an isomorphism extending f.

Proof. By (Lemma 2.2.5) and symmetry, we only need to check that if C D A is a finite
substructure of M, then f extends to C.

We know by amalgamation that there is some D € K, with embeddings g : B — D and
gc : C — D, such that gg o f equals the composition of gc with the inclusion map, which means
go extends gg o f. We can shrink D to be the range of go, in which case g¢ is an isomorphism.
This would be perfect, with go extending f, if B C D C N. All we know is that D is isomorphic
to a substructure of IV - but we may as well assume it actually is one, because composing with that
isomorphism won’t change anything so far. Then gg, restricted to its image, is an isomorphism
B — gp(B) C D, which must extend to an automorphism h : N — N. Thus the substructure
we're looking for is B C h=1(D) C N, as h=! o gp is just the inclusion map, and then h~! o g¢,
appropriately restricted, gives an isomorphism C — h~!(D) extending h=' o gg o f, and thus
f. O

To the category theory enthusiasts in the audience, note that this uniqueness is not uniqueness
up to unique isomorphism. Fraissé theory is otherwise very categorical, but this provides an unusual
wrinkle in categorical presentations of this topic. If you're interested in giving a presentation on the
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categorical aspects of Fraissé theory later in the semester, I have some recommended papers on the
course website.
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